These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 30369116)
1. Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Saechow S; Thammasittirong A; Kittakoop P; Prachya S; Thammasittirong SN J Microbiol Biotechnol; 2018 Sep; 28(9):1527-1535. PubMed ID: 30369116 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Nanjundan J; Ramasamy R; Uthandi S; Ponnusamy M Microb Pathog; 2019 Mar; 128():374-380. PubMed ID: 30695712 [TBL] [Abstract][Full Text] [Related]
3. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Radovanović N; Milutinović M; Mihajlovski K; Jović J; Nastasijević B; Rajilić-Stojanović M; Dimitrijević-Branković S Microb Pathog; 2018 Jul; 120():71-78. PubMed ID: 29709685 [TBL] [Abstract][Full Text] [Related]
4. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Ding L; Guo W; Chen X Appl Microbiol Biotechnol; 2019 Jul; 103(13):5367-5377. PubMed ID: 31053917 [TBL] [Abstract][Full Text] [Related]
5. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Arrebola E; Jacobs R; Korsten L J Appl Microbiol; 2010 Feb; 108(2):386-95. PubMed ID: 19674188 [TBL] [Abstract][Full Text] [Related]
6. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Wu Y; Zhou J; Li C; Ma Y Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064 [TBL] [Abstract][Full Text] [Related]
7. A Thermotolerant Marine Singh P; Xie J; Qi Y; Qin Q; Jin C; Wang B; Fang W Mar Drugs; 2021 Sep; 19(9):. PubMed ID: 34564178 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Sarwar A; Hassan MN; Imran M; Iqbal M; Majeed S; Brader G; Sessitsch A; Hafeez FY Microbiol Res; 2018 Apr; 209():1-13. PubMed ID: 29580617 [TBL] [Abstract][Full Text] [Related]
9. Structural and Functional Insights into Iturin W, a Novel Lipopeptide Produced by the Deep-Sea Bacterium Zhou S; Liu G; Zheng R; Sun C; Wu S Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859591 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969 [TBL] [Abstract][Full Text] [Related]
11. Clarification of the Antagonistic Effect of the Lipopeptides Produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via In Situ MALDI-TOF IMS Analysis. Liao JH; Chen PY; Yang YL; Kan SC; Hsieh FC; Liu YC Molecules; 2016 Dec; 21(12):. PubMed ID: 27918491 [TBL] [Abstract][Full Text] [Related]
12. Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. Dimopoulou A; Theologidis I; Benaki D; Koukounia M; Zervakou A; Tzima A; Diallinas G; Hatzinikolaou DG; Skandalis N mSphere; 2021 Aug; 6(4):e0037621. PubMed ID: 34378986 [TBL] [Abstract][Full Text] [Related]
13. Genomic Analysis Reveals Potential Mechanisms Underlying Promotion of Tomato Plant Growth and Antagonism of Soilborne Pathogens by Bacillus amyloliquefaciens Ba13. Ji C; Zhang M; Kong Z; Chen X; Wang X; Ding W; Lai H; Guo Q Microbiol Spectr; 2021 Dec; 9(3):e0161521. PubMed ID: 34756081 [TBL] [Abstract][Full Text] [Related]
14. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10. Zhang QX; Zhang Y; Shan HH; Tong YH; Chen XJ; Liu FQ Environ Sci Pollut Res Int; 2017 Nov; 24(32):25000-25009. PubMed ID: 28920176 [TBL] [Abstract][Full Text] [Related]
15. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. Hazarika DJ; Goswami G; Gautom T; Parveen A; Das P; Barooah M; Boro RC BMC Microbiol; 2019 Apr; 19(1):71. PubMed ID: 30940070 [TBL] [Abstract][Full Text] [Related]
16. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. Lin C; Tsai CH; Chen PY; Wu CY; Chang YL; Yang YL; Chen YL PLoS One; 2018; 13(4):e0196520. PubMed ID: 29698535 [TBL] [Abstract][Full Text] [Related]
17. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203 [TBL] [Abstract][Full Text] [Related]
18. Complete genome sequence of Bacillus amyloliquefaciens B15 isolated from grape skin, a strain of strong inhibitory activity against fungi. Yan Y; Liu S; Wang D; Xue J; Guo D; Song X; Zhang F; Huang S; Luan C J Biotechnol; 2016 Jun; 228():28-29. PubMed ID: 27114322 [TBL] [Abstract][Full Text] [Related]
19. Purification and Identification of Two Antifungal Cyclic Peptides Produced by Bacillus amyloliquefaciens L-H15. Han Y; Zhang B; Shen Q; You C; Yu Y; Li P; Shang Q Appl Biochem Biotechnol; 2015 Aug; 176(8):2202-12. PubMed ID: 26123083 [TBL] [Abstract][Full Text] [Related]
20. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. Kalai-Grami L; Karkouch I; Naili O; Slimene IB; Elkahoui S; Zekri RB; Touati I; Mnari-Hattab M; Hajlaoui MR; Limam F J Basic Microbiol; 2016 Aug; 56(8):864-71. PubMed ID: 27125201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]