These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3036944)
21. Lipid A-associated proteins provide an alternate "second signal" in the activation of recombinant interferon-gamma-primed, C3H/HeJ macrophages to a fully tumoricidal state. Hogan MM; Vogel SN J Immunol; 1987 Dec; 139(11):3697-702. PubMed ID: 3119714 [TBL] [Abstract][Full Text] [Related]
22. Downregulation of M-CSF receptors by lipopolysaccharide in murine peritoneal exudate macrophages is mediated through a phospholipase C dependent pathway. Chen BD; Chou TH; Sensenbrenner L Exp Hematol; 1993 May; 21(5):623-8. PubMed ID: 8513862 [TBL] [Abstract][Full Text] [Related]
23. Involvement of protein kinases in the potentiation of lipopolysaccharide-induced inflammatory mediator formation by thapsigargin in peritoneal macrophages. Chen BC; Hsieh SL; Lin WW J Leukoc Biol; 2001 Feb; 69(2):280-8. PubMed ID: 11272279 [TBL] [Abstract][Full Text] [Related]
25. Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: correlation with biochemical and functional parameters. Cooper PH; Mayer P; Baggiolini M J Immunol; 1984 Aug; 133(2):913-22. PubMed ID: 6736651 [TBL] [Abstract][Full Text] [Related]
26. LPS regulation of specific protein synthesis in murine peritoneal macrophages. Largen MT; Tannenbaum CS J Immunol; 1986 Feb; 136(3):988-93. PubMed ID: 3484502 [TBL] [Abstract][Full Text] [Related]
27. Homologous and heterologous desensitization of proto-oncogene cfos expression in murine peritoneal macrophages. Introna M; Bast RC; Johnston PA; Adams DO; Hamilton TA J Cell Physiol; 1987 Apr; 131(1):36-42. PubMed ID: 3571335 [TBL] [Abstract][Full Text] [Related]
28. Role of protein kinase C subtypes alpha and delta in the regulation of bradykinin-stimulated phosphoinositide breakdown in astrocytes. Chen CC; Chang J; Chen WC Mol Pharmacol; 1995 Jul; 48(1):39-47. PubMed ID: 7623773 [TBL] [Abstract][Full Text] [Related]
29. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation. Wu GJ; Chen TL; Ueng YF; Chen RM Toxicol Appl Pharmacol; 2008 Apr; 228(1):105-13. PubMed ID: 18191973 [TBL] [Abstract][Full Text] [Related]
30. Lipopolysaccharide stimulates the tyrosine phosphorylation of mitogen-activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14-dependent manner. Role of protein tyrosine phosphorylation in lipopolysaccharide-induced stimulation of endothelial cells. Arditi M; Zhou J; Torres M; Durden DL; Stins M; Kim KS J Immunol; 1995 Oct; 155(8):3994-4003. PubMed ID: 7561108 [TBL] [Abstract][Full Text] [Related]
31. RAW264 macrophages stably transfected with an HIV-1 LTR reporter gene provide a sensitive bioassay for analysis of signalling pathways in macrophages stimulated with lipopolysaccharide, TNF-alpha or taxol. Sweet MJ; Hume DA J Inflamm; 1995; 45(2):126-35. PubMed ID: 7583358 [TBL] [Abstract][Full Text] [Related]
32. Mechanisms of lipopolysaccharide-initiated rabbit platelet responses. II. Evidence that lipid A is responsible for binding of lipopolysaccharide to the platelet. Morrison DC; Oades ZG J Immunol; 1979 Mar; 122(3):753-8. PubMed ID: 448073 [TBL] [Abstract][Full Text] [Related]
33. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Weinstein SL; Gold MR; DeFranco AL Proc Natl Acad Sci U S A; 1991 May; 88(10):4148-52. PubMed ID: 1709735 [TBL] [Abstract][Full Text] [Related]
34. Determination of second messengers and protein kinase C in bone marrow derived macrophages stimulated with a bacterial lipopeptide. Hauschildt S; Wolf B; Lückhoff A; Bessler WG Mol Immunol; 1990 Jun; 27(6):473-9. PubMed ID: 2166234 [TBL] [Abstract][Full Text] [Related]
35. Chemical and biological properties of a protein-rich fraction of bacterial lipopolysaccharides. II. The in vitro rat peritoneal mast cell response. Morrison DC; Betz SJ J Immunol; 1977 Nov; 119(5):1790-5. PubMed ID: 334970 [TBL] [Abstract][Full Text] [Related]
36. Suppression of murine macrophage interleukin-1 release by the polysaccharide portion of Haemophilus actinomycetemcomitans lipopolysaccharide. Nishihara T; Koga T; Hamada S Infect Immun; 1988 Mar; 56(3):619-25. PubMed ID: 3257748 [TBL] [Abstract][Full Text] [Related]
37. Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. McLeish KR; Dean WL; Wellhausen SR; Stelzer GT Inflammation; 1989 Dec; 13(6):681-92. PubMed ID: 2533167 [TBL] [Abstract][Full Text] [Related]
38. The effect of endotoxin lipopolysaccharide from different bacterial species on the generation of intracellular inositol trisphosphate and superoxide in a human phagocytic cell line. Qu JM; Leaver HA; Aldhous MC; Yap PL FEMS Microbiol Immunol; 1990 Dec; 2(5-6):279-83. PubMed ID: 1963542 [TBL] [Abstract][Full Text] [Related]
39. Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. Chen TY; Lei MG; Suzuki T; Morrison DC Curr Top Microbiol Immunol; 1992; 181():169-88. PubMed ID: 1385048 [TBL] [Abstract][Full Text] [Related]
40. [FDA-hydrolysis for the fluorometrical evidence of a cell membrane alteration in peritoneal macrophages (author's transl)]. Augsten K; Güttner J Acta Histochem; 1975; 52(1):79-87. PubMed ID: 809979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]