BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30369579)

  • 21. Pericardial fat volume is related to atherosclerotic plaque burden rather than to lesion severity.
    Rodriguez-Granillo GA; Carrascosa P; Deviggiano A; Capunay C; De Zan MC; Goldsmit A; Campisi R
    Eur Heart J Cardiovasc Imaging; 2017 Jul; 18(7):795-801. PubMed ID: 27369846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smoking in Relation to Coronary Atherosclerotic Plaque Burden, Volume and Composition on Intravascular Ultrasound.
    Buljubasic N; Akkerhuis KM; de Boer SP; Cheng JM; Garcia-Garcia HM; Lenzen MJ; Oemrawsingh RM; Battes LC; Rijndertse M; Regar E; Serruys PW; van Geuns RJ; Boersma E; Kardys I
    PLoS One; 2015; 10(10):e0141093. PubMed ID: 26491969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epicardial fat attenuation, not volume, predicts obstructive coronary artery disease and high risk plaque features in patients with atypical chest pain.
    Pandey NN; Sharma S; Jagia P; Kumar S
    Br J Radiol; 2020 Oct; 93(1114):20200540. PubMed ID: 32706985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results.
    Mazurek T; Kochman J; Kobylecka M; Wilimski R; Filipiak KJ; Królicki L; Opolski G
    Kardiol Pol; 2014; 72(5):410-6. PubMed ID: 24293143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis.
    Shimabukuro M; Hirata Y; Tabata M; Dagvasumberel M; Sato H; Kurobe H; Fukuda D; Soeki T; Kitagawa T; Takanashi S; Sata M
    Arterioscler Thromb Vasc Biol; 2013 May; 33(5):1077-84. PubMed ID: 23471228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound.
    Gauss S; Achenbach S; Pflederer T; Schuhbäck A; Daniel WG; Marwan M
    Heart; 2011 Jun; 97(12):991-7. PubMed ID: 21478387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography.
    Goeller M; Tamarappoo BK; Kwan AC; Cadet S; Commandeur F; Razipour A; Slomka PJ; Gransar H; Chen X; Otaki Y; Friedman JD; Cao JJ; Albrecht MH; Bittner DO; Marwan M; Achenbach S; Berman DS; Dey D
    Eur Heart J Cardiovasc Imaging; 2019 Jun; 20(6):636-643. PubMed ID: 30789223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS.
    Marwan M; Taher MA; El Meniawy K; Awadallah H; Pflederer T; Schuhbäck A; Ropers D; Daniel WG; Achenbach S
    Atherosclerosis; 2011 Mar; 215(1):110-5. PubMed ID: 21227419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: a 3-dimensional cardiac computed tomography imaging study in Japanese subjects.
    Dagvasumberel M; Shimabukuro M; Nishiuchi T; Ueno J; Takao S; Fukuda D; Hirata Y; Kurobe H; Soeki T; Iwase T; Kusunose K; Niki T; Yamaguchi K; Taketani Y; Yagi S; Tomita N; Yamada H; Wakatsuki T; Harada M; Kitagawa T; Sata M
    Cardiovasc Diabetol; 2012 Sep; 11():106. PubMed ID: 22963346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in the Fat Attenuation Index Ratio of Pericoronary Adipose Tissue And Aortic Root Epicardial Adipose Tissue in Various Plaques.
    Ying W; Chen Q; Cao J; Zhang Y; Pan X; Ye F; Hao D; Liu H; Tao X
    Curr Med Imaging; 2023 Oct; ():. PubMed ID: 37921149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of culprit plaque volume and composition on myocardial microcirculation following primary angioplasty in patients with ST-segment elevation myocardial infarction: virtual histology intravascular ultrasound analysis.
    Ohshima K; Ikeda S; Kadota H; Yamane K; Izumi N; Ohshima K; Hamada M
    Int J Cardiol; 2013 Aug; 167(3):1000-5. PubMed ID: 22481047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epicardial adipose tissue is associated with high-risk plaque feature progression in non-culprit lesions.
    Tan Y; Zhou J; Zhou Y; Yang X; Wang J; Chen Y
    Int J Cardiovasc Imaging; 2017 Dec; 33(12):2029-2037. PubMed ID: 28550587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relation of Epicardial Adipose Tissue Radiodensity to Coronary Artery Calcium on Cardiac Computed Tomography in Patients at High Risk for Cardiovascular Disease.
    Franssens BT; Nathoe HM; Visseren FL; van der Graaf Y; Leiner T;
    Am J Cardiol; 2017 May; 119(9):1359-1365. PubMed ID: 28279438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relation of epicardial adipose tissue to coronary atherosclerosis.
    Djaberi R; Schuijf JD; van Werkhoven JM; Nucifora G; Jukema JW; Bax JJ
    Am J Cardiol; 2008 Dec; 102(12):1602-7. PubMed ID: 19064012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques.
    Tachibana M; Miyoshi T; Osawa K; Toh N; Oe H; Nakamura K; Naito T; Sato S; Kanazawa S; Ito H
    Heart Vessels; 2016 Nov; 31(11):1758-1766. PubMed ID: 26833041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography.
    Oka T; Yamamoto H; Ohashi N; Kitagawa T; Kunita E; Utsunomiya H; Yamazato R; Urabe Y; Horiguchi J; Awai K; Kihara Y
    Int J Cardiol; 2012 Nov; 161(1):45-9. PubMed ID: 21570136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association between histological features of epicardial adipose tissue and coronary plaque characteristics on computed tomography angiography.
    Senoo A; Kitagawa T; Torimaki S; Yamamoto H; Sentani K; Takahashi S; Kubo Y; Yasui W; Sueda T; Kihara Y
    Heart Vessels; 2018 Aug; 33(8):827-836. PubMed ID: 29387923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coronary plaque progression of non-culprit lesions after culprit percutaneous coronary intervention in patients with moderate to advanced chronic kidney disease: intravascular ultrasound and integrated backscatter intravascular ultrasound study.
    Kashiyama K; Sonoda S; Muraoka Y; Suzuki Y; Kamezaki F; Tsuda Y; Araki M; Tamura M; Takeuchi M; Abe H; Okazaki M; Fujino Y; Otsuji Y
    Int J Cardiovasc Imaging; 2015 Jun; 31(5):935-45. PubMed ID: 25724567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gender-linked impact of epicardial adipose tissue volume in patients who underwent coronary artery bypass graft surgery or non-coronary valve surgery.
    Maimaituxun G; Shimabukuro M; Salim HM; Tabata M; Yuji D; Morimoto Y; Akasaka T; Matsuura T; Yagi S; Fukuda D; Yamada H; Soeki T; Sugimoto T; Tanaka M; Takanashi S; Sata M
    PLoS One; 2017; 12(6):e0177170. PubMed ID: 28594865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison between 40 MHz intravascular ultrasound iMap imaging system and integrated backscatter intravascular ultrasound.
    Yamada R; Okura H; Kume T; Neishi Y; Kawamoto T; Miyamoto Y; Imai K; Saito K; Hayashida A; Yoshida K
    J Cardiol; 2013 Feb; 61(2):149-54. PubMed ID: 23265675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.