These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30369629)

  • 21. Mixture EMOS model for calibrating ensemble forecasts of wind speed.
    Baran S; Lerch S
    Environmetrics; 2016 Mar; 27(2):116-130. PubMed ID: 27812298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A forecast of staple crop production in Burkina Faso to enable early warnings of shortages in domestic food availability.
    Laudien R; Schauberger B; Waid J; Gornott C
    Sci Rep; 2022 Jan; 12(1):1638. PubMed ID: 35102220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of derived global weather data on simulated crop yields.
    van Wart J; Grassini P; Cassman KG
    Glob Chang Biol; 2013 Dec; 19(12):3822-34. PubMed ID: 23801639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.
    Qader SH; Dash J; Atkinson PM
    Sci Total Environ; 2018 Feb; 613-614():250-262. PubMed ID: 28915461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generative emulation of weather forecast ensembles with diffusion models.
    Li L; Carver R; Lopez-Gomez I; Sha F; Anderson J
    Sci Adv; 2024 Mar; 10(13):eadk4489. PubMed ID: 38552014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the environmental impact of crop production in China using a comprehensive footprint approach.
    Li Y; Wu W; Yang J; Cheng K; Smith P; Sun J; Xu X; Yue Q; Pan G
    Sci Total Environ; 2022 Jun; 824():153898. PubMed ID: 35182617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize.
    Bastiaanssen WGM; Steduto P
    Sci Total Environ; 2017 Jan; 575():595-611. PubMed ID: 27712867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of weather parameter-based pre-harvest yield forecast models for wheat crop: a case study in Saurashtra region of Gujarat.
    Banakara KB; Sharma N; Sahoo S; Dubey SK; Chowdary VM
    Environ Monit Assess; 2022 Nov; 195(1):51. PubMed ID: 36316588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal variability of water footprint for cereal production and its controls in Saskatchewan, Canada.
    Zhao Y; Ding D; Si B; Zhang Z; Hu W; Schoenau J
    Sci Total Environ; 2019 Apr; 660():1306-1316. PubMed ID: 30743925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-season performance of European Union wheat forecasts during extreme impacts.
    van der Velde M; Baruth B; Bussay A; Ceglar A; Garcia Condado S; Karetsos S; Lecerf R; Lopez R; Maiorano A; Nisini L; Seguini L; van den Berg M
    Sci Rep; 2018 Oct; 8(1):15420. PubMed ID: 30337571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Downscaling Global Gridded Crop Yield Data Products and Crop Water Productivity Mapping Using Remote Sensing Derived Variables in the South Asia.
    Mohanasundaram S; Kasiviswanathan KS; Purnanjali C; Santikayasa IP; Singh S
    Int J Plant Prod; 2023; 17(1):1-16. PubMed ID: 36405847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling future water footprint of barley production in Alberta, Canada: Implications for water use and yields to 2064.
    Masud MB; McAllister T; Cordeiro MRC; Faramarzi M
    Sci Total Environ; 2018 Mar; 616-617():208-222. PubMed ID: 29112843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.
    Dubey SK; Sharma D
    Sci Total Environ; 2018 Sep; 635():10-19. PubMed ID: 29660713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulating maize water productivity at deficit irrigated field in north west Ethiopia.
    Eshete DG; Sinshaw BG; Gizaw HD; Zerihun BA
    Sustain Water Resour Manag; 2022; 8(6):186. PubMed ID: 36340010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.
    Ceglar A; Toreti A; Prodhomme C; Zampieri M; Turco M; Doblas-Reyes FJ
    Sci Rep; 2018 Jan; 8(1):1322. PubMed ID: 29358696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate medium-range global weather forecasting with 3D neural networks.
    Bi K; Xie L; Zhang H; Chen X; Gu X; Tian Q
    Nature; 2023 Jul; 619(7970):533-538. PubMed ID: 37407823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation.
    Nouri H; Stokvis B; Galindo A; Blatchford M; Hoekstra AY
    Sci Total Environ; 2019 Feb; 653():241-252. PubMed ID: 30412869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models.
    Garofalo P; Ventrella D; Kersebaum KC; Gobin A; Trnka M; Giglio L; Dubrovský M; Castellini M
    Sci Total Environ; 2019 Mar; 658():1186-1208. PubMed ID: 30677982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt.
    Elbeltagi A; Aslam MR; Malik A; Mehdinejadiani B; Srivastava A; Bhatia AS; Deng J
    Sci Total Environ; 2020 Nov; 743():140770. PubMed ID: 32679501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.