These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30369783)

  • 1. Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data.
    Vidotto D; Vermunt JK; van Deun K
    J Educ Behav Stat; 2018 Oct; 43(5):511-539. PubMed ID: 30369783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple imputation of longitudinal categorical data through bayesian mixture latent Markov models.
    Vidotto D; Vermunt JK; Van Deun K
    J Appl Stat; 2020; 47(10):1720-1738. PubMed ID: 35707130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation.
    Enders CK; Mistler SA; Keller BT
    Psychol Methods; 2016 Jun; 21(2):222-40. PubMed ID: 26690775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach.
    Grund S; Lüdtke O; Robitzsch A
    Behav Res Methods; 2021 Dec; 53(6):2631-2649. PubMed ID: 34027594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple imputation for discrete data: Evaluation of the joint latent normal model.
    Quartagno M; Carpenter JR
    Biom J; 2019 Jul; 61(4):1003-1019. PubMed ID: 30868652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latent class based multiple imputation approach for missing categorical data.
    Gebregziabher M; DeSantis SM
    J Stat Plan Inference; 2010 Nov; 140(11):3252-3262. PubMed ID: 30555206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models.
    Park J; Yu HT
    Educ Psychol Meas; 2016 Oct; 76(5):824-847. PubMed ID: 29795890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood.
    Ferro MA
    Ann Epidemiol; 2014 Jan; 24(1):75-7. PubMed ID: 24210708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple imputation for longitudinal data using Bayesian lasso imputation model.
    Yamaguchi Y; Yoshida S; Misumi T; Maruo K
    Stat Med; 2022 Mar; 41(6):1042-1058. PubMed ID: 35064581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial.
    Siddique J; Harel O; Crespi CM; Hedeker D
    Stat Med; 2014 Jul; 33(17):3013-28. PubMed ID: 24634315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple imputation of missing data in multilevel ecological momentary assessments: an example using smoking cessation study data.
    Ji L; Li Y; Potter LN; Lam CY; Nahum-Shani I; Wetter DW; Chow SM
    Front Digit Health; 2023; 5():1099517. PubMed ID: 38026834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How handling missing data may impact conclusions: A comparison of six different imputation methods for categorical questionnaire data.
    Stavseth MR; Clausen T; Røislien J
    SAGE Open Med; 2019; 7():2050312118822912. PubMed ID: 30671242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multilevel Bayesian Approach to Improve Effect Size Estimation in Regression Modeling of Metabolomics Data Utilizing Imputation with Uncertainty.
    Gillies CE; Jennaro TS; Puskarich MA; Sharma R; Ward KR; Fan X; Jones AE; Stringer KA
    Metabolites; 2020 Aug; 10(8):. PubMed ID: 32781624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach.
    Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM
    Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note.
    Grund S; Lüdtke O; Robitzsch A
    Behav Res Methods; 2016 Jun; 48(2):640-9. PubMed ID: 25939979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Approach to Addressing Multiple Imputation Model Uncertainty Using Bayesian Model Averaging.
    Kaplan D; Yavuz S
    Multivariate Behav Res; 2020; 55(4):553-567. PubMed ID: 31538505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of incomplete-data methods for categorical data.
    van der Palm DW; van der Ark LA; Vermunt JK
    Stat Methods Med Res; 2016 Apr; 25(2):754-74. PubMed ID: 23166159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian multiple imputation approach to bivariate functional data with missing components.
    Jang JH; Manatunga AK; Chang C; Long Q
    Stat Med; 2021 Sep; 40(22):4772-4793. PubMed ID: 34102703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation methods for missing multilevel ordinal outcomes.
    Dong M; Mitani A
    BMC Med Res Methodol; 2023 May; 23(1):112. PubMed ID: 37161419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple imputation of missing data in multilevel designs: A comparison of different strategies.
    Lüdtke O; Robitzsch A; Grund S
    Psychol Methods; 2017 Mar; 22(1):141-165. PubMed ID: 27607544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.