BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 30370251)

  • 41. Hematopoiesis and microenvironment in hematological malignancies.
    Cheng H; Sun G; Cheng T
    Cell Regen; 2018 Sep; 7(1):22-26. PubMed ID: 30671226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phenotypic alteration of bone marrow HSC and microenvironmental association in experimentally induced leukemia.
    Basak P; Chatterjee S; Das M; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    Curr Stem Cell Res Ther; 2010 Dec; 5(4):379-86. PubMed ID: 20528754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.
    Hira VVV; Van Noorden CJF; Carraway HE; Maciejewski JP; Molenaar RJ
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):183-198. PubMed ID: 28363872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells.
    Yehudai-Resheff S; Attias-Turgeman S; Sabbah R; Gabay T; Musallam R; Fridman-Dror A; Zuckerman T
    Int J Cancer; 2019 May; 144(9):2279-2289. PubMed ID: 30548585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment.
    Kogan AA; Lapidus RG; Baer MR; Rassool FV
    Adv Cancer Res; 2019; 141():213-253. PubMed ID: 30691684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance?
    Ciciarello M; Corradi G; Forte D; Cavo M; Curti A
    Cancers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of Microenvironment in Resistance to Therapy in AML.
    Tabe Y; Konopleva M
    Curr Hematol Malig Rep; 2015 Jun; 10(2):96-103. PubMed ID: 25921386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging the Vascular Bone Marrow Niche During Inflammatory Stress.
    Vandoorne K; Rohde D; Kim HY; Courties G; Wojtkiewicz G; Honold L; Hoyer FF; Frodermann V; Nayar R; Herisson F; Jung Y; Désogère PA; Vinegoni C; Caravan P; Weissleder R; Sosnovik DE; Lin CP; Swirski FK; Nahrendorf M
    Circ Res; 2018 Aug; 123(4):415-427. PubMed ID: 29980569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting the microenvironment in acute myeloid leukemia.
    Rashidi A; Uy GL
    Curr Hematol Malig Rep; 2015 Jun; 10(2):126-31. PubMed ID: 25921388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transformation of myelodysplastic syndromes into acute myeloid leukemias.
    Shi J; Shao ZH; Liu H; Bai J; Cao YR; He GS; Tu MF; Wang XL; Hao YS; Yang TY; Yang CL
    Chin Med J (Engl); 2004 Jul; 117(7):963-7. PubMed ID: 15265365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bone marrow neoplastic niche in leukemia.
    Azizidoost S; Babashah S; Rahim F; Shahjahani M; Saki N
    Hematology; 2014 Jun; 19(4):232-8. PubMed ID: 23905984
    [TBL] [Abstract][Full Text] [Related]  

  • 52. IGFBP7 Induces Differentiation and Loss of Survival of Human Acute Myeloid Leukemia Stem Cells without Affecting Normal Hematopoiesis.
    Verhagen HJMP; van Gils N; Martiañez T; van Rhenen A; Rutten A; Denkers F; de Leeuw DC; Smit MA; Tsui ML; de Vos Klootwijk LLE; Menezes RX; Çil M; Roemer MGM; Vermue E; Heukelom S; Zweegman S; Janssen JJWM; Ossenkoppele GJ; Schuurhuis GJ; Smit L
    Cell Rep; 2018 Dec; 25(11):3021-3035.e5. PubMed ID: 30540936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Chronic myeloid leukemia stem cells: cross-talk with the niche].
    Chomel JC; Aggoune D; Sorel N; Turhan AG
    Med Sci (Paris); 2014 Apr; 30(4):452-61. PubMed ID: 24801043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osteolineage cells and regulation of the hematopoietic stem cell.
    Calvi LM
    Best Pract Res Clin Haematol; 2013 Sep; 26(3):249-52. PubMed ID: 24309526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of CD44 variant exons in acute myeloid leukemia is more common and more complex than that observed in normal blood, bone marrow or CD34+ cells.
    Bendall LJ; Bradstock KF; Gottlieb DJ
    Leukemia; 2000 Jul; 14(7):1239-46. PubMed ID: 10914548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing.
    Zhou J; Chng WJ
    Front Oncol; 2024; 14():1365330. PubMed ID: 38711849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting Leukemia Stem Cell-Niche Dynamics: A New Challenge in AML Treatment.
    Bernasconi P; Borsani O
    J Oncol; 2019; 2019():8323592. PubMed ID: 31485227
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Angiogenesis in patients with hematologic malignancies].
    Mesters RM; Padró T; Steins M; Bieker R; Retzlaff S; Kessler T; Kienast J; Berdel WE
    Onkologie; 2001 Sep; 24 Suppl 5():75-80. PubMed ID: 11600818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The angioregulatory cytokine network in human acute myeloid leukemia - from leukemogenesis via remission induction to stem cell transplantation.
    Reikvam H; Hatfield KJ; Fredly H; Nepstad I; Mosevoll KA; Bruserud Ø
    Eur Cytokine Netw; 2012; 23(4):140-53. PubMed ID: 23328436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis.
    Desbourdes L; Javary J; Charbonnier T; Ishac N; Bourgeais J; Iltis A; Chomel JC; Turhan A; Guilloton F; Tarte K; Demattei MV; Ducrocq E; Rouleux-Bonnin F; Gyan E; Hérault O; Domenech J
    Stem Cells Dev; 2017 May; 26(10):709-722. PubMed ID: 28394200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.