These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30370472)

  • 1. Micromachined optical flow cell for sensitive measurement of droplets in tubing.
    Hassan SU; Nightingale AM; Niu X
    Biomed Microdevices; 2018 Oct; 20(4):92. PubMed ID: 30370472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets.
    Piao Y; Han DJ; Azad MR; Park M; Seo TS
    Biosens Bioelectron; 2015 Mar; 65():220-5. PubMed ID: 25461161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous measurement of enzymatic kinetics in droplet flow for point-of-care monitoring.
    Hassan SU; Nightingale AM; Niu X
    Analyst; 2016 May; 141(11):3266-73. PubMed ID: 27007645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
    Hengoju S; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biosens Bioelectron; 2022 Mar; 200():113910. PubMed ID: 34974260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive absorbance measurement using droplet microfluidics integrated with an oil extraction and long pathlength detection flow cell.
    Lu B; Lunn J; Nightingale AM; Niu X
    Front Chem; 2024; 12():1394388. PubMed ID: 38803381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening.
    Trivedi V; Doshi A; Kurup GK; Ereifej E; Vandevord PJ; Basu AS
    Lab Chip; 2010 Sep; 10(18):2433-42. PubMed ID: 20717617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact Nanowire Sensors Probe Microdroplets.
    Schütt J; Ibarlucea B; Illing R; Zörgiebel F; Pregl S; Nozaki D; Weber WM; Mikolajick T; Baraban L; Cuniberti G
    Nano Lett; 2016 Aug; 16(8):4991-5000. PubMed ID: 27417510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions.
    Pompano RR; Liu W; Du W; Ismagilov RF
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():59-81. PubMed ID: 21370983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device.
    Oomen PE; Mulder JPSH; Verpoorte E; Oleschuk RD
    Anal Chim Acta; 2017 Oct; 988():50-57. PubMed ID: 28916103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS).
    Gielen F; Hours R; Emond S; Fischlechner M; Schell U; Hollfelder F
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7383-E7389. PubMed ID: 27821774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A paper-based calorimetric microfluidics platform for bio-chemical sensing.
    Davaji B; Lee CH
    Biosens Bioelectron; 2014 Sep; 59():120-6. PubMed ID: 24713542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Fluorescent Hydrogel Glucose Biosensing Microdroplets with Dual-Mode Fluorescence Quenching and Size Reduction.
    Park HI; Park SY
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30172-30179. PubMed ID: 30134101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in point-of-care technologies for molecular diagnostics.
    Zarei M
    Biosens Bioelectron; 2017 Dec; 98():494-506. PubMed ID: 28728010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free single-cell analysis in microdroplets using a light-scattering-based optofluidic chip.
    Liang L; Liang M; Zuo Z; Ai Y
    Biosens Bioelectron; 2024 Jun; 253():116148. PubMed ID: 38428071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A portable droplet microfluidic device for cortisol measurements using a competitive heterogeneous assay.
    Evans GWH; Bhuiyan WT; Pang S; Warren B; Makris K; Coleman S; Hassan SU; Niu X
    Analyst; 2021 Jul; 146(14):4535-4544. PubMed ID: 34137757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric biosensors with integrated microfluidic channels.
    Zhang Y; Tadigadapa S
    Biosens Bioelectron; 2004 Jul; 19(12):1733-43. PubMed ID: 15142608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.