These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30370526)
1. Molecular insights into development of Trichoderma interfusants for multistress tolerance enhancing antagonism against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Patel AK; Katakpara ZA; Golakiya BA J Cell Physiol; 2019 May; 234(5):7368-7383. PubMed ID: 30370526 [TBL] [Abstract][Full Text] [Related]
2. Molecular heterozygosity and genetic exploitations of Trichoderma inter-fusants enhancing tolerance to fungicides and mycoparasitism against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP Infect Genet Evol; 2018 Dec; 66():26-36. PubMed ID: 30219319 [TBL] [Abstract][Full Text] [Related]
3. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Hirapara JG; Golakiya BA Infect Genet Evol; 2017 Nov; 55():75-92. PubMed ID: 28864153 [TBL] [Abstract][Full Text] [Related]
4. Exploring conserved and novel MicroRNA-like small RNAs from stress tolerant Trichoderma fusants and parental strains during interaction with fungal phytopathogen Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Savaliya DD; Parakhia MV Pestic Biochem Physiol; 2023 Apr; 191():105368. PubMed ID: 36963937 [TBL] [Abstract][Full Text] [Related]
5. Characterization and bioefficacy of green nanosilver particles derived from fungicide-tolerant Tricho-fusant for efficient biocontrol of stem rot (Sclerotium rolfsii Sacc.) in groundnut (Arachis hypogaea L.). Hirpara DG; Gajera HP; Savaliya DD; Bhadani RV J Microbiol; 2021 Nov; 59(11):1031-1043. PubMed ID: 34613606 [TBL] [Abstract][Full Text] [Related]
6. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc. Hirpara DG; Gajera HP; Bhimani RD; Golakiya BA Curr Genet; 2016 Aug; 62(3):619-41. PubMed ID: 26803831 [TBL] [Abstract][Full Text] [Related]
7. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists. Hirpara DG; Gajera HP; Hirpara HZ; Golakiya BA J Mol Microbiol Biotechnol; 2017; 27(1):22-28. PubMed ID: 28081530 [TBL] [Abstract][Full Text] [Related]
8. Intracellular metabolomics and microRNAomics unveil new insight into the regulatory network for potential biocontrol mechanism of stress-tolerant Tricho-fusants interacting with phytopathogen Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP J Cell Physiol; 2023 Jun; 238(6):1288-1307. PubMed ID: 37021806 [TBL] [Abstract][Full Text] [Related]
9. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Shaigan S; Seraji A; Moghaddam SA Pak J Biol Sci; 2008 Oct; 11(19):2346-50. PubMed ID: 19137869 [TBL] [Abstract][Full Text] [Related]
10. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Sarrocco S; Mikkelsen L; Vergara M; Jensen DF; Lübeck M; Vannacci G Mycol Res; 2006 Feb; 110(Pt 2):179-87. PubMed ID: 16388938 [TBL] [Abstract][Full Text] [Related]
11. Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii. Rabinal C; Bhat S Curr Microbiol; 2020 Mar; 77(3):396-404. PubMed ID: 31844935 [TBL] [Abstract][Full Text] [Related]
12. Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Gajera HP; Hirpara DG; Katakpara ZA; Patel SV; Golakiya BA Infect Genet Evol; 2016 Nov; 45():383-392. PubMed ID: 27720889 [TBL] [Abstract][Full Text] [Related]
13. Influence of protoplast fusion between two Hassan MM Biotechnol Biotechnol Equip; 2014 Nov; 28(6):1014-1023. PubMed ID: 26019588 [TBL] [Abstract][Full Text] [Related]
14. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
15. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens. Rashmi S; Maurya S; Upadhyay RS Braz J Microbiol; 2016; 47(1):10-7. PubMed ID: 26887221 [TBL] [Abstract][Full Text] [Related]
16. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716 [TBL] [Abstract][Full Text] [Related]
17. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn. Asad-Uz-Zaman M; Bhuiyan MR; Khan MA; Alam Bhuiyan MK; Latif MA C R Biol; 2015 Feb; 338(2):112-20. PubMed ID: 25595298 [TBL] [Abstract][Full Text] [Related]
18. Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii MTCC 3011, and their evaluation for antagonistic and biocontrol potential. Mukherjee PK; Sherkhane PD; Murthy NB Indian J Exp Biol; 1999 Jul; 37(7):710-2. PubMed ID: 10522159 [TBL] [Abstract][Full Text] [Related]
19. Gliotoxin Is an Important Secondary Metabolite Involved in Suppression of Hua L; Zeng H; He L; Jiang Q; Ye P; Liu Y; Sun X; Zhang M Phytopathology; 2021 Oct; 111(10):1720-1725. PubMed ID: 33620234 [No Abstract] [Full Text] [Related]
20. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L (Baby corn)--in vitro studies. Patil NN; Waghmode MS; Gaikwad PS; Gajbhiye MH; Gunjal AB; Nawani NN; Kapadnis BP Indian J Exp Biol; 2014 Nov; 52(11):1147-51. PubMed ID: 25434111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]