These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 30370587)

  • 1. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.
    Stevenson CH; Hong SC; Ogbuehi KC
    Clin Exp Ophthalmol; 2019 May; 47(4):484-489. PubMed ID: 30370587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.
    Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J
    Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interobserver agreement in the interpretation of single-field digital fundus images for diabetic retinopathy screening.
    Ruamviboonsuk P; Teerasuwanajak K; Tiensuwan M; Yuttitham K;
    Ophthalmology; 2006 May; 113(5):826-32. PubMed ID: 16650679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.
    Lin D; Xiong J; Liu C; Zhao L; Li Z; Yu S; Wu X; Ge Z; Hu X; Wang B; Fu M; Zhao X; Wang X; Zhu Y; Chen C; Li T; Li Y; Wei W; Zhao M; Li J; Xu F; Ding L; Tan G; Xiang Y; Hu Y; Zhang P; Han Y; Li JO; Wei L; Zhu P; Liu Y; Chen W; Ting DSW; Wong TY; Chen Y; Lin H
    Lancet Digit Health; 2021 Aug; 3(8):e486-e495. PubMed ID: 34325853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an autonomous artificial intelligence-based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context.
    Font O; Torrents-Barrena J; Royo D; García SB; Zarranz-Ventura J; Bures A; Salinas C; Zapata MÁ
    Graefes Arch Clin Exp Ophthalmol; 2022 Oct; 260(10):3255-3265. PubMed ID: 35567610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid grading of fundus photographs for diabetic retinopathy using crowdsourcing.
    Brady CJ; Villanti AC; Pearson JL; Kirchner TR; Gupta OP; Shah CP
    J Med Internet Res; 2014 Oct; 16(10):e233. PubMed ID: 25356929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of quantitative mapping and stereoscopic fundus photography grading of retinal thickness in diabetic eyes with macular edema.
    Yang Y; Vitale S; Ding Y; O'Connell SR; Alexander J; Bressler NM; Schachat AP; Zeimer R
    Ophthalmic Surg Lasers Imaging; 2003; 34(1):7-16. PubMed ID: 12569999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application effect of an artificial intelligence-based fundus screening system: evaluation in a clinical setting and population screening.
    Cao S; Zhang R; Jiang A; Kuerban M; Wumaier A; Wu J; Xie K; Aizezi M; Tuersun A; Liang X; Chen R
    Biomed Eng Online; 2023 Apr; 22(1):38. PubMed ID: 37095516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.
    Liu S; Graham SL; Schulz A; Kalloniatis M; Zangerl B; Cai W; Gao Y; Chua B; Arvind H; Grigg J; Chu D; Klistorner A; You Y
    Ophthalmol Glaucoma; 2018; 1(1):15-22. PubMed ID: 32672627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks.
    Cen LP; Ji J; Lin JW; Ju ST; Lin HJ; Li TP; Wang Y; Yang JF; Liu YF; Tan S; Tan L; Li D; Wang Y; Zheng D; Xiong Y; Wu H; Jiang J; Wu Z; Huang D; Shi T; Chen B; Yang J; Zhang X; Luo L; Huang C; Zhang G; Huang Y; Ng TK; Chen H; Chen W; Pang CP; Zhang M
    Nat Commun; 2021 Aug; 12(1):4828. PubMed ID: 34376678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Clinical Metadata on the Accuracy of Retinal Fundus Image Labels in Diabetic Retinopathy in Uganda: Case-Crossover Study Using the Multimodal Database of Retinal Images in Africa.
    Arunga S; Morley KE; Kwaga T; Morley MG; Nakayama LF; Mwavu R; Kaggwa F; Ssempiira J; Celi LA; Haberer JE; Obua C
    JMIR Form Res; 2024 Sep; 8():e59914. PubMed ID: 39293049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated analysis of retinal images for detection of referable diabetic retinopathy.
    Abràmoff MD; Folk JC; Han DP; Walker JD; Williams DF; Russell SR; Massin P; Cochener B; Gain P; Tang L; Lamard M; Moga DC; Quellec G; Niemeijer M
    JAMA Ophthalmol; 2013 Mar; 131(3):351-7. PubMed ID: 23494039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence.
    Doğan ME; Bilgin AB; Sari R; Bulut M; Akar Y; Aydemir M
    Eye (Lond); 2024 Jun; 38(9):1694-1701. PubMed ID: 38467864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral.
    Korot E; Gonçalves MB; Huemer J; Beqiri S; Khalid H; Kelly M; Chia M; Mathijs E; Struyven R; Moussa M; Keane PA
    JAMA Ophthalmol; 2023 Nov; 141(11):1029-1036. PubMed ID: 37856110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software.
    Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q
    Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471
    [No Abstract]   [Full Text] [Related]  

  • 20. Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases.
    Burlina P; Paul W; Mathew P; Joshi N; Pacheco KD; Bressler NM
    JAMA Ophthalmol; 2020 Oct; 138(10):1070-1077. PubMed ID: 32880609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.