BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30370670)

  • 1. Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology.
    Gao G; Park JY; Kim BS; Jang J; Cho DW
    Adv Healthc Mater; 2018 Dec; 7(23):e1801102. PubMed ID: 30370670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering.
    Sousa CFV; Saraiva CA; Correia TR; Pesqueira T; Patrício SG; Rial-Hermida MI; Borges J; Mano JF
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium.
    Cui H; Zhu W; Huang Y; Liu C; Yu ZX; Nowicki M; Miao S; Cheng Y; Zhou X; Lee SJ; Zhou Y; Wang S; Mohiuddin M; Horvath K; Zhang LG
    Biofabrication; 2019 Oct; 12(1):015004. PubMed ID: 31470437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional cell-printing of advanced renal tubular tissue analogue.
    Singh NK; Han W; Nam SA; Kim JW; Kim JY; Kim YK; Cho DW
    Biomaterials; 2020 Feb; 232():119734. PubMed ID: 31918226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium.
    Millik SC; Dostie AM; Karis DG; Smith PT; McKenna M; Chan N; Curtis CD; Nance E; Theberge AB; Nelson A
    Biofabrication; 2019 Jul; 11(4):045009. PubMed ID: 31220824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating perfused functional vascular channels using 3D bio-printing technology.
    Lee VK; Kim DY; Ngo H; Lee Y; Seo L; Yoo SS; Vincent PA; Dai G
    Biomaterials; 2014 Sep; 35(28):8092-102. PubMed ID: 24965886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin.
    Kim BS; Gao G; Kim JY; Cho DW
    Adv Healthc Mater; 2019 Apr; 8(7):e1801019. PubMed ID: 30358939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation.
    Distler T; Ruther F; Boccaccini AR; Detsch R
    Macromol Biosci; 2019 Sep; 19(9):e1900245. PubMed ID: 31386277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Vasculatures by 3D-Printed Porous Molds.
    Ching T; Vasudevan J; Chang SY; Tan HY; Sargur Ranganath A; Lim CT; Fernandez JG; Ng JJ; Toh YC; Hashimoto M
    Small; 2022 Sep; 18(39):e2203426. PubMed ID: 35866462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-casting approach for vascular networks in cellularized hydrogels.
    Justin AW; Brooks RA; Markaki AE
    J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 27928031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-Write Deposition of Thermogels.
    Giannitelli SM; Chiono V; Mozetic P
    Methods Mol Biol; 2021; 2147():137-142. PubMed ID: 32840816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Tissue-Level Cancer-Vascular Model with High-Precision Position Control via In Situ 3D Cell Printing.
    Kim BS; Cho WW; Gao G; Ahn M; Kim J; Cho DW
    Small Methods; 2021 Jul; 5(7):e2100072. PubMed ID: 34928000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.
    Kim BS; Kwon YW; Kong JS; Park GT; Gao G; Han W; Kim MB; Lee H; Kim JH; Cho DW
    Biomaterials; 2018 Jun; 168():38-53. PubMed ID: 29614431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ExCeL: combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Biofabrication; 2019 Apr; 11(3):035002. PubMed ID: 30769331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.