These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30370717)

  • 21. Characterisation of human penile tissue properties using experimental testing combined with multi-target inverse finite element modelling.
    Akbarzadeh Khorshidi M; Bose S; Watschke B; Mareena E; Lally C
    Acta Biomater; 2024 Aug; 184():226-238. PubMed ID: 38945188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.
    Davis ML; Moreno DP; Vavalle NA; Gayzik FS
    Biomed Sci Instrum; 2013; 49():289-96. PubMed ID: 23686212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling fatigue failure in soft tissue using a visco-hyperelastic model with discontinuous damage.
    Henderson BS; Cudworth KF; Peña E; Lujan TJ
    J Mech Behav Biomed Mater; 2023 Aug; 144():105968. PubMed ID: 37390777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Hyperelastic Material Parameters of Elastomers by Reverse Engineering Approach.
    Yenigun B; Gkouti E; Barbaraci G; Czekanski A
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Uniaxial Stress-Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method.
    Nguyen HD; Huang SC
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain Material Properties and Integration of Arachnoid Complex for Biofidelic Impact Response for Human Head Finite Element Model.
    Rycman A; Bustamante M; Cronin DS
    Ann Biomed Eng; 2024 Apr; 52(4):908-919. PubMed ID: 38218736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of rib structural responses under dynamic loadings using different material properties: A finite element analysis.
    Shen J; Roth S
    Med Eng Phys; 2022 Jul; 105():103820. PubMed ID: 35781384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of mechanical tests on a living skin using anisotropic hyperelastic law.
    Alliliche W; Renaud C; Cros JM; Feng ZQ
    J Mech Behav Biomed Mater; 2023 May; 141():105755. PubMed ID: 36898353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations.
    Fougeron N; Oddes Z; Ashkenazi A; Solav D
    J Mech Behav Biomed Mater; 2024 Jul; 155():106572. PubMed ID: 38754153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homogenization of heterogeneous brain tissue under quasi-static loading: a visco-hyperelastic model of a 3D RVE.
    Kazempour M; Baniassadi M; Shahsavari H; Remond Y; Baghani M
    Biomech Model Mechanobiol; 2019 Aug; 18(4):969-981. PubMed ID: 30762151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse Parameter Identification for Hyperelastic Model of a Polyurea.
    Xiao Y; Tang Z; Hong X
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
    Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G
    Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Validation of a New Anisotropic Visco-Hyperelastic Human Head Finite Element Model Capable of Predicting Multiple Brain Injuries.
    Lyu D; Zhou R; Lin CH; Prasad P; Zhang L
    Front Bioeng Biotechnol; 2022; 10():831595. PubMed ID: 35402400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.