BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30370758)

  • 41. Self-Assembly of Semiconductor Quantum Dots using Organic Templates.
    Yamauchi M; Masuo S
    Chemistry; 2020 Jun; 26(32):7176-7184. PubMed ID: 32101343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A facile synthesis of biocompatible, glycol chitosan shelled CdSeS/ZnS QDs for live cell imaging.
    Zhao M; Chen Y; Han R; Luo D; Du L; Zheng Q; Wang L; Hong Y; Liu Y; Sha Y
    Colloids Surf B Biointerfaces; 2018 Dec; 172():752-759. PubMed ID: 30253350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties.
    Geszke-Moritz M; Moritz M
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1008-21. PubMed ID: 23827537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent nanocrystal quantum dots as medical diagnostic tools.
    Sukhanova A; Nabiev I
    Expert Opin Med Diagn; 2008 Apr; 2(4):429-47. PubMed ID: 23495709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters.
    Dembele F; Tasso M; Trapiella-Alfonso L; Xu X; Hanafi M; Lequeux N; Pons T
    ACS Appl Mater Interfaces; 2017 May; 9(21):18161-18169. PubMed ID: 28467039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting.
    Sobiech M; Bujak P; Luliński P; Pron A
    Nanoscale; 2019 Jul; 11(25):12030-12074. PubMed ID: 31204762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The future of quantum dots in drug discovery.
    Lin G; Yin F; Yong KT
    Expert Opin Drug Discov; 2014 Sep; 9(9):991-4. PubMed ID: 24935029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are quantum dots ready for in vivo imaging in human subjects?
    Cai W; Hsu AR; Li ZB; Chen X
    Nanoscale Res Lett; 2007 Jun; 2(6):265-281. PubMed ID: 21394238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dependence of Quantum Dot Toxicity In Vitro on Their Size, Chemical Composition, and Surface Charge.
    Sukhanova A; Bozrova S; Gerasimovich E; Baryshnikova M; Sokolova Z; Samokhvalov P; Guhrenz C; Gaponik N; Karaulov A; Nabiev I
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Luminescent biocompatible quantum dots: a tool for immunosorbent assay design.
    Goldman ER; Uyeda HT; Hayhurst A; Mattoussi H
    Methods Mol Biol; 2007; 374():207-27. PubMed ID: 17237541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry.
    Chen Y; Cordero JM; Wang H; Franke D; Achorn OB; Freyria FS; Coropceanu I; Wei H; Chen O; Mooney DJ; Bawendi MG
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4652-4656. PubMed ID: 29479792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand.
    Liu W; Greytak AB; Lee J; Wong CR; Park J; Marshall LF; Jiang W; Curtin PN; Ting AY; Nocera DG; Fukumura D; Jain RK; Bawendi MG
    J Am Chem Soc; 2010 Jan; 132(2):472-83. PubMed ID: 20025223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coating of Quantum Dots strongly defines their effect on lysosomal health and autophagy.
    Peynshaert K; Soenen SJ; Manshian BB; Doak SH; Braeckmans K; De Smedt SC; Remaut K
    Acta Biomater; 2017 Jan; 48():195-205. PubMed ID: 27765679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Threonine functionalized colloidal cadmium sulfide (CdS) quantum dots: The role of solvent and counterion in ligand induced chiroptical properties.
    Kwon YH; Joh YA; Leonard BM; Balaz M; Varga K
    J Colloid Interface Sci; 2023 Jul; 642():771-778. PubMed ID: 37037081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stable DHLA-PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging.
    Zamberlan F; Turyanska L; Patanè A; Liu Z; Williams HEL; Fay MW; Clarke PA; Imamura Y; Jin T; Bradshaw TD; Thomas NR; Grabowska AM
    J Mater Chem B; 2018 Jan; 6(4):550-555. PubMed ID: 32254483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution.
    Wang Y; Si B; Lu S; Ma X; Liu E; Fan J; Li X; Hu X
    Nanotechnology; 2016 Sep; 27(36):365707. PubMed ID: 27482982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z; Chen L
    Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots.
    Zhang S; Jiang Y; Chen CS; Creeley D; Schwehr KA; Quigg A; Chin WC; Santschi PH
    Aquat Toxicol; 2013 Jan; 126():214-23. PubMed ID: 23246863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching.
    Lippert LG; Hallock JT; Dadosh T; Diroll BT; Murray CB; Goldman YE
    Bioconjug Chem; 2016 Mar; 27(3):562-8. PubMed ID: 26722835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.