These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30370981)

  • 21. The transport of monomers during lignification in plants: anything goes but how?
    Perkins M; Smith RA; Samuels L
    Curr Opin Biotechnol; 2019 Apr; 56():69-74. PubMed ID: 30347315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant cell wall engineering: applications in biofuel production and improved human health.
    Burton RA; Fincher GB
    Curr Opin Biotechnol; 2014 Apr; 26():79-84. PubMed ID: 24679262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synthesis and metabolic control of polysaccharides and lignin during the differentiation of plant cells.
    Northcote DH
    Essays Biochem; 1969; 5():89-137. PubMed ID: 4915278
    [No Abstract]   [Full Text] [Related]  

  • 24. The cell biology of secondary cell wall biosynthesis.
    Meents MJ; Watanabe Y; Samuels AL
    Ann Bot; 2018 May; 121(6):1107-1125. PubMed ID: 29415210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone.
    Wilkerson CG; Mansfield SD; Lu F; Withers S; Park JY; Karlen SD; Gonzales-Vigil E; Padmakshan D; Unda F; Rencoret J; Ralph J
    Science; 2014 Apr; 344(6179):90-3. PubMed ID: 24700858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EPR imaging of sinapyl alcohol and its application to the study of plant cell wall lignification.
    Simon C; Lion C; Ahouari H; Vezin H; Hawkins S; Biot C
    Chem Commun (Camb); 2021 Jan; 57(3):387-390. PubMed ID: 33326527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties.
    Pesquet E; Wagner A; Grabber JH
    Curr Opin Biotechnol; 2019 Apr; 56():215-222. PubMed ID: 30849592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of plant cell wall lignification using fluorescence-tagged monolignols.
    Tobimatsu Y; Wagner A; Donaldson L; Mitra P; Niculaes C; Dima O; Kim JI; Anderson N; Loque D; Boerjan W; Chapple C; Ralph J
    Plant J; 2013 Nov; 76(3):357-66. PubMed ID: 23889038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly.
    Ruel K; Chabannes M; Boudet A; Legrand M; Joseleau J
    Phytochemistry; 2001 Jul; 57(6):875-82. PubMed ID: 11423138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignification in plant cell walls.
    Ros Barceló A
    Int Rev Cytol; 1997; 176():87-132. PubMed ID: 9394918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blind image analysis for the compositional and structural characterization of plant cell walls.
    Perera PN; Schmidt M; Schuck PJ; Adams PD
    Anal Chim Acta; 2011 Sep; 702(2):172-7. PubMed ID: 21839194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of Bioorthogonal Chemistry in Tumor-Targeted Drug Discovery.
    Liu G; Wold EA; Zhou J
    Curr Top Med Chem; 2019; 19(11):892-897. PubMed ID: 31074366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new scheme of lignin biosynthesis and the mechanism of its regulation of functional properties.
    Semenov DA; Sudachkova NE; Khlebopros RG
    Dokl Biochem Biophys; 2002; 382():50-2. PubMed ID: 11938671
    [No Abstract]   [Full Text] [Related]  

  • 36. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy.
    Carpita NC
    Curr Opin Biotechnol; 2012 Jun; 23(3):330-7. PubMed ID: 22209015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.
    Fornalé S; Capellades M; Encina A; Wang K; Irar S; Lapierre C; Ruel K; Joseleau JP; Berenguer J; Puigdomènech P; Rigau J; Caparrós-Ruiz D
    Mol Plant; 2012 Jul; 5(4):817-30. PubMed ID: 22147756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
    Charlier L; Mazeau K
    J Phys Chem B; 2012 Apr; 116(14):4163-74. PubMed ID: 22429051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods.
    Jin Z; Katsumata KS; Lam TB; Iiyama K
    Biopolymers; 2006 Oct; 83(2):103-10. PubMed ID: 16673388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.