These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30371070)

  • 1. Genetic Incorporation of Olefin Cross-Metathesis Reaction Tags for Protein Modification.
    Bhushan B; Lin YA; Bak M; Phanumartwiwath A; Yang N; Bilyard MK; Tanaka T; Hudson KL; Lercher L; Stegmann M; Mohammed S; Davis BG
    J Am Chem Soc; 2018 Nov; 140(44):14599-14603. PubMed ID: 30371070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.
    Lin YA; Chalker JM; Davis BG
    J Am Chem Soc; 2010 Dec; 132(47):16805-11. PubMed ID: 21050005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "tag-and-modify" approach to site-selective protein modification.
    Chalker JM; Bernardes GJ; Davis BG
    Acc Chem Res; 2011 Sep; 44(9):730-41. PubMed ID: 21563755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells.
    Song W; Wang Y; Qu J; Lin Q
    J Am Chem Soc; 2008 Jul; 130(30):9654-5. PubMed ID: 18593155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olefin metathesis for site-selective protein modification.
    Lin YA; Chalker JM; Davis BG
    Chembiochem; 2009 Apr; 10(6):959-69. PubMed ID: 19343741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine.
    Chalker JM; Lin YA; Boutureira O; Davis BG
    Chem Commun (Camb); 2009 Jul; (25):3714-6. PubMed ID: 19557258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification.
    Lin YA; Chalker JM; Floyd N; Bernardes GJ; Davis BG
    J Am Chem Soc; 2008 Jul; 130(30):9642-3. PubMed ID: 18593118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids.
    Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K
    ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic introduction of a diketone-containing amino acid into proteins.
    Zeng H; Xie J; Schultz PG
    Bioorg Med Chem Lett; 2006 Oct; 16(20):5356-9. PubMed ID: 16934461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Incorporation of the Unnatural Amino Acid p-Acetyl Phenylalanine into Proteins for Site-Directed Spin Labeling.
    Evans EG; Millhauser GL
    Methods Enzymol; 2015; 563():503-27. PubMed ID: 26478497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-selection in olefin cross-metathesis: the effect of remote functionality.
    McNaughton BR; Bucholtz KM; CamaaƱo-Moure A; Miller BL
    Org Lett; 2005 Feb; 7(4):733-6. PubMed ID: 15704937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residue-specific incorporation of unnatural amino acids into proteins in vitro and in vivo.
    Singh-Blom A; Hughes RA; Ellington AD
    Methods Mol Biol; 2013; 978():93-114. PubMed ID: 23423891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of fluorescent non-natural amino acids into N-terminal tag of proteins in cell-free translation and its dependence on position and neighboring codons.
    Abe R; Shiraga K; Ebisu S; Takagi H; Hohsaka T
    J Biosci Bioeng; 2010 Jul; 110(1):32-8. PubMed ID: 20541112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells.
    Bednar RM; Jana S; Kuppa S; Franklin R; Beckman J; Antony E; Cooley RB; Mehl RA
    ACS Chem Biol; 2021 Nov; 16(11):2612-2622. PubMed ID: 34590824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-metathesis coupling of sugars and fatty acids to lysine and cysteine.
    Vernall AJ; Abell AD
    Org Biomol Chem; 2004 Sep; 2(18):2555-7. PubMed ID: 15351816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins.
    Lin YA; Boutureira O; Lercher L; Bhushan B; Paton RS; Davis BG
    J Am Chem Soc; 2013 Aug; 135(33):12156-9. PubMed ID: 23889088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation.
    Nojoumi S; Ma Y; Schwagerus S; Hackenberger CPR; Budisa N
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31075919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds.
    Xu C; Shen X; Hoveyda AH
    J Am Chem Soc; 2017 Aug; 139(31):10919-10928. PubMed ID: 28749659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.
    Worst EG; Exner MP; De Simone A; Schenkelberger M; Noireaux V; Budisa N; Ott A
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27500416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids.
    Helma J; Leonhardt H; Hackenberger CPR; Schumacher D
    Methods Mol Biol; 2018; 1728():67-93. PubMed ID: 29404991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.