BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30371266)

  • 1. Molecular Atlas of Postnatal Mouse Heart Development.
    Talman V; Teppo J; Pöhö P; Movahedi P; Vaikkinen A; Karhu ST; Trošt K; Suvitaival T; Heikkonen J; Pahikkala T; Kotiaho T; Kostiainen R; Varjosalo M; Ruskoaho H
    J Am Heart Assoc; 2018 Oct; 7(20):e010378. PubMed ID: 30371266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide profiling of miRNA-gene regulatory networks in mouse postnatal heart development-implications for cardiac regeneration.
    Chaudhari U; Pohjolainen L; Ruskoaho H; Talman V
    Front Cardiovasc Med; 2023; 10():1148618. PubMed ID: 37283582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTORC1 regulates the metabolic switch of postnatal cardiomyocytes during regeneration.
    Paltzer WG; Aballo TJ; Bae J; Flynn CGK; Wanless KN; Hubert KA; Nuttall DJ; Perry C; Nahlawi R; Ge Y; Mahmoud AI
    J Mol Cell Cardiol; 2024 Feb; 187():15-25. PubMed ID: 38141532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quantitative Combinatorial Omics Approach.
    Lalowski MM; Björk S; Finckenberg P; Soliymani R; Tarkia M; Calza G; Blokhina D; Tulokas S; Kankainen M; Lakkisto P; Baumann M; Kankuri E; Mervaala E
    Front Physiol; 2018; 9():365. PubMed ID: 29695975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome.
    Gan J; Sonntag HJ; Tang MK; Cai D; Lee KK
    PLoS One; 2015; 10(7):e0133288. PubMed ID: 26200114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.
    Brandi J; Dando I; Pozza ED; Biondani G; Jenkins R; Elliott V; Park K; Fanelli G; Zolla L; Costello E; Scarpa A; Cecconi D; Palmieri M
    J Proteomics; 2017 Jan; 150():310-322. PubMed ID: 27746256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart.
    Cook GA; Lavrentyev EN; Pham K; Park EA
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):307-312. PubMed ID: 27845231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.
    Sun H; Olson KC; Gao C; Prosdocimo DA; Zhou M; Wang Z; Jeyaraj D; Youn JY; Ren S; Liu Y; Rau CD; Shah S; Ilkayeva O; Gui WJ; William NS; Wynn RM; Newgard CB; Cai H; Xiao X; Chuang DT; Schulze PC; Lynch C; Jain MK; Wang Y
    Circulation; 2016 May; 133(21):2038-49. PubMed ID: 27059949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.
    Halama A; Horsch M; Kastenmüller G; Möller G; Kumar P; Prehn C; Laumen H; Hauner H; Hrabĕ de Angelis M; Beckers J; Suhre K; Adamski J
    Arch Biochem Biophys; 2016 Jan; 589():93-107. PubMed ID: 26408941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTORC1 Regulates the Metabolic Switch of Postnatal Cardiomyocytes During Regeneration.
    Paltzer WG; Aballo TJ; Bae J; Hubert KA; Nuttall DJ; Perry C; Wanless KN; Nahlawi R; Ge Y; Mahmoud AI
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stretch activates a pathway linked to mevalonate metabolism in cultured neonatal rat heart cells.
    Kashiwagi Y; Haneda T; Osaki J; Miyata S; Kikuchi K
    Hypertens Res; 1998 Jun; 21(2):109-19. PubMed ID: 9661807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner.
    Li J; Yang KY; Tam RCY; Chan VW; Lan HY; Hori S; Zhou B; Lui KO
    Theranostics; 2019; 9(15):4324-4341. PubMed ID: 31285764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts.
    Zhang T; Zhu Y; Wang X; Chong D; Wang H; Bu D; Zhao M; Fang L; Li C
    J Genet Genomics; 2024 Jul; 51(7):735-748. PubMed ID: 38479452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of etomoxir on the mRNA levels of enzymes involved in ketogenesis and cholesterogenesis in rat liver.
    Asins G; Serra D; Hegardt FG
    Biochem Pharmacol; 1994 Apr; 47(8):1373-9. PubMed ID: 7910458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis.
    Hegardt FG
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):569-82. PubMed ID: 10051425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway.
    Mills RJ; Parker BL; Quaife-Ryan GA; Voges HK; Needham EJ; Bornot A; Ding M; Andersson H; Polla M; Elliott DA; Drowley L; Clausen M; Plowright AT; Barrett IP; Wang QD; James DE; Porrello ER; Hudson JE
    Cell Stem Cell; 2019 Jun; 24(6):895-907.e6. PubMed ID: 30930147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated proteomics reveals alterations in sarcomere composition and developmental processes during postnatal swine heart development.
    Aballo TJ; Roberts DS; Bayne EF; Zhu W; Walcott G; Mahmoud AI; Zhang J; Ge Y
    J Mol Cell Cardiol; 2023 Mar; 176():33-40. PubMed ID: 36657638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress.
    Huang J; Xu L; Huang Q; Luo J; Liu P; Chen S; Yuan X; Lu Y; Wang P; Zhou S
    J Cell Mol Med; 2015 Jul; 19(7):1672-88. PubMed ID: 25753319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Proteomics Identifies Troponin I Isoform Switch as a Regulator of a Sarcomere-Metabolism Axis During Cardiac Regeneration.
    Aballo TJ; Bae J; Paltzer WG; Chapman EA; Salamon RJ; Mann MM; Ge Y; Mahmoud AI
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.