These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30371380)
1. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. Lim H; Ku J IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380 [TBL] [Abstract][Full Text] [Related]
2. Multiple-command single-frequency SSVEP-based BCI system using flickering action video. Lim H; Ku J J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844 [TBL] [Abstract][Full Text] [Related]
3. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Son JE; Choi H; Lim H; Ku J Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183 [TBL] [Abstract][Full Text] [Related]
4. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs). Lim H; Ku J Biomed Eng Lett; 2017 Nov; 7(4):281-286. PubMed ID: 30603177 [TBL] [Abstract][Full Text] [Related]
5. Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain-Computer Interface Action-Observation Games. Lim H; Ku J Cyberpsychol Behav Soc Netw; 2021 Aug; 24(8):566-572. PubMed ID: 33275851 [TBL] [Abstract][Full Text] [Related]
6. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game. Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549 [TBL] [Abstract][Full Text] [Related]
7. An Adaptive Hybrid Brain-Computer Interface for Hand Function Rehabilitation of Stroke Patients. Su J; Wang J; Wang W; Wang Y; Bunterngchit C; Zhang P; Hou ZG IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2950-2960. PubMed ID: 39028609 [TBL] [Abstract][Full Text] [Related]
8. Action Observation of Own Hand Movement Enhances Event-Related Desynchronization. Nagai H; Tanaka T IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1407-1415. PubMed ID: 31144639 [TBL] [Abstract][Full Text] [Related]
9. Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults. Lee HM; Li PC; Fan SC J Neuroeng Rehabil; 2015 Jul; 12():56. PubMed ID: 26160599 [TBL] [Abstract][Full Text] [Related]
10. Attentional State-Dependent Peripheral Electrical Stimulation During Action Observation Enhances Cortical Activations in Stroke Patients. Lim H; Jeong CH; Kang YJ; Ku J Cyberpsychol Behav Soc Netw; 2023 Jun; 26(6):408-416. PubMed ID: 37083413 [TBL] [Abstract][Full Text] [Related]
11. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003 [TBL] [Abstract][Full Text] [Related]
12. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N Neuroimage; 2014 Feb; 87():127-37. PubMed ID: 24140938 [TBL] [Abstract][Full Text] [Related]
13. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review. Zhang JJQ; Fong KNK; Welage N; Liu KPY Neural Plast; 2018; 2018():2321045. PubMed ID: 29853839 [TBL] [Abstract][Full Text] [Related]
14. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area? Zhang X; Xu G; Ravi A; Pearce S; Jiang N J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32238617 [No Abstract] [Full Text] [Related]
15. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
16. Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Arıkan KB; Zadeh HGM; Turgut AE; Zinnuroğlu M; Bayer G; Günendi Z; Cengiz B Turk J Med Sci; 2019 Aug; 49(4):1054-1067. PubMed ID: 31293146 [TBL] [Abstract][Full Text] [Related]
17. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI. Syrov N; Yakovlev L; Miroshnikov A; Kaplan A Front Hum Neurosci; 2023; 17():1180056. PubMed ID: 37213933 [TBL] [Abstract][Full Text] [Related]
18. Crossmodal Classification of Mu Rhythm Activity during Action Observation and Execution Suggests Specificity to Somatosensory Features of Actions. Coll MP; Press C; Hobson H; Catmur C; Bird G J Neurosci; 2017 Jun; 37(24):5936-5947. PubMed ID: 28559380 [TBL] [Abstract][Full Text] [Related]
19. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
20. BCI Monitor Enhances Electroencephalographic and Cerebral Hemodynamic Activations During Motor Training. Wang Z; Zhou Y; Chen L; Gu B; Yi W; Liu S; Xu M; Qi H; He F; Ming D IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):780-787. PubMed ID: 30843846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]