These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30371771)

  • 1. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance.
    de Witt RN; Kroukamp H; Volschenk H
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30371771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound.
    Lin FM; Qiao B; Yuan YJ
    Appl Environ Microbiol; 2009 Jun; 75(11):3765-76. PubMed ID: 19363068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance.
    de Witt RN; Kroukamp H; Van Zyl WH; Paulsen IT; Volschenk H
    FEMS Yeast Res; 2019 Aug; 19(5):. PubMed ID: 31276593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Cámara E; Mormino M; Siewers V; Nygård Y
    Appl Environ Microbiol; 2024 May; 90(5):e0233023. PubMed ID: 38587374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates.
    Mertens JA; Skory CD; Nichols NN; Hector RE
    Biotechnol Prog; 2021 Mar; 37(2):e3094. PubMed ID: 33085224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock.
    Xiao W; Duan X; Lin Y; Cao Q; Li S; Guo Y; Gan Y; Qi X; Zhou Y; Guo L; Qin P; Wang Q; Shui W
    J Proteome Res; 2018 May; 17(5):1812-1825. PubMed ID: 29611422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress.
    Lv YJ; Wang X; Ma Q; Bai X; Li BZ; Zhang W; Yuan YJ
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2207-21. PubMed ID: 24442506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS; Qiao B; Yuan YJ
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):327-38. PubMed ID: 18923828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.
    Kong II; Turner TL; Kim H; Kim SR; Jin YS
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29325040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.
    Martani F; Fossati T; Posteri R; Signori L; Porro D; Branduardi P
    Yeast; 2013 Sep; 30(9):365-78. PubMed ID: 23847041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteome and transcriptome analysis of lager brewer's yeast in the autolysis process.
    Xu W; Wang J; Li Q
    FEMS Yeast Res; 2014 Dec; 14(8):1273-85. PubMed ID: 25345722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2.
    Santos RM; Nogueira FC; Brasil AA; Carvalho PC; Leprevost FV; Domont GB; Eleutherio EC
    J Proteomics; 2017 Jan; 151():114-121. PubMed ID: 27576599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
    Almario MP; Reyes LH; Kao KC
    Biotechnol Bioeng; 2013 Oct; 110(10):2616-23. PubMed ID: 23613173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses.
    Unrean P; Gätgens J; Klein B; Noack S; Champreda V
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30256930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation.
    Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.
    Swinnen S; Fernández-Niño M; González-Ramos D; van Maris AJ; Nevoigt E
    FEMS Yeast Res; 2014 Jun; 14(4):642-53. PubMed ID: 24645649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.