BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1111 related articles for article (PubMed ID: 30372042)

  • 1. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function.
    Adam SM; Wijeratne GB; Rogler PJ; Diaz DE; Quist DA; Liu JJ; Karlin KD
    Chem Rev; 2018 Nov; 118(22):10840-11022. PubMed ID: 30372042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric and Electronic Structure Contributions to O-O Cleavage and the Resultant Intermediate Generated in Heme-Copper Oxidases.
    Schaefer AW; Roveda AC; Jose A; Solomon EI
    J Am Chem Soc; 2019 Jun; 141(25):10068-10081. PubMed ID: 31146528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenol-Induced O-O Bond Cleavage in a Low-Spin Heme-Peroxo-Copper Complex: Implications for O
    Schaefer AW; Kieber-Emmons MT; Adam SM; Karlin KD; Solomon EI
    J Am Chem Soc; 2017 Jun; 139(23):7958-7973. PubMed ID: 28521498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-copper and Heme O
    Panda S; Phan H; Karlin KD
    J Inorg Biochem; 2023 Dec; 249():112367. PubMed ID: 37742491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six-Transmembrane Epithelial Antigen of Prostate 1 (STEAP1) Has a Single b Heme and Is Capable of Reducing Metal Ion Complexes and Oxygen.
    Kim K; Mitra S; Wu G; Berka V; Song J; Yu Y; Poget S; Wang DN; Tsai AL; Zhou M
    Biochemistry; 2016 Dec; 55(48):6673-6684. PubMed ID: 27792302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-Copper(I) Primary O
    Kim B; Karlin KD
    Acc Chem Res; 2023 Aug; 56(16):2197-2212. PubMed ID: 37527056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity studies on Fe(III)-(O2(2-))-Cu(II) compounds: influence of the ligand architecture and copper ligand denticity.
    Chufán EE; Mondal B; Gandhi T; Kim E; Rubie ND; Moënne-Loccoz P; Karlin KD
    Inorg Chem; 2007 Aug; 46(16):6382-94. PubMed ID: 17616124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases.
    Poiana F; von Ballmoos C; Gonska N; Blomberg MRA; Ädelroth P; Brzezinski P
    Sci Adv; 2017 Jun; 3(6):e1700279. PubMed ID: 28630929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protein effect in the structure of two ferryl-oxo intermediates at the same oxidation level in the heme copper binuclear center of cytochrome c oxidase.
    Pinakoulaki E; Daskalakis V; Ohta T; Richter OM; Budiman K; Kitagawa T; Ludwig B; Varotsis C
    J Biol Chem; 2013 Jul; 288(28):20261-6. PubMed ID: 23723073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases.
    Bhagi-Damodaran A; Michael MA; Zhu Q; Reed J; Sandoval BA; Mirts EN; Chakraborty S; Moënne-Loccoz P; Zhang Y; Lu Y
    Nat Chem; 2017 Mar; 9(3):257-263. PubMed ID: 28221360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases.
    Zhang W; Moore CE; Zhang S
    J Am Chem Soc; 2022 Feb; 144(4):1709-1717. PubMed ID: 35044761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O2(2-))-CuII]+.
    Ghiladi RA; Huang HW; Moënne-Loccoz P; Stasser J; Blackburn NJ; Woods AS; Cotter RJ; Incarvito CD; Rheingold AL; Karlin KD
    J Biol Inorg Chem; 2005 Jan; 10(1):63-77. PubMed ID: 15583964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of O
    Blomberg MRA
    Chem Soc Rev; 2020 Oct; 49(20):7301-7330. PubMed ID: 33006348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural and functional perspective on the evolution of the heme-copper oxidases.
    Sharma V; Wikström M
    FEBS Lett; 2014 Nov; 588(21):3787-92. PubMed ID: 25261254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonation of the oxo-bridged heme/copper assemblies: Modeling the oxidized state of the cytochrome c oxidase active site.
    Carrasco MC; Dezarn KJ; Khan FST; Hematian S
    J Inorg Biochem; 2021 Dec; 225():111593. PubMed ID: 34555598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The three-spin intermediate at the O-O cleavage and proton-pumping junction in heme-Cu oxidases.
    Jose A; Schaefer AW; Roveda AC; Transue WJ; Choi SK; Ding Z; Gennis RB; Solomon EI
    Science; 2021 Sep; 373(6560):1225-1229. PubMed ID: 34516790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the peroxy intermediate in the oxygen splitting reaction of cytochrome cbb(3).
    Sharma V; Wikström M; Kaila VR
    Biochim Biophys Acta; 2011 Jul; 1807(7):813-8. PubMed ID: 21315685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology.
    Kosman DJ
    J Biol Inorg Chem; 2010 Jan; 15(1):15-28. PubMed ID: 19816718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.