These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30372048)

  • 21. Isolation of prostate cancer-related exosomes.
    Mizutani K; Terazawa R; Kameyama K; Kato T; Horie K; Tsuchiya T; Seike K; Ehara H; Fujita Y; Kawakami K; Ito M; Deguchi T
    Anticancer Res; 2014 Jul; 34(7):3419-23. PubMed ID: 24982349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable Framework Nucleic Acid-Modified Nanomagnetic Beads for Efficient Isolation of Exosomes and Exosomal Proteomics Analysis.
    Chu Z; Song Y; Wu M; Zhu M; Meng B; Zhao Y; Zhai R; Dai X; Fang X
    Anal Chem; 2024 Sep; 96(35):14099-14107. PubMed ID: 39161057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a rinsing separation method for exosome isolation and comparison to conventional methods.
    Cheng H; Fang H; Xu RD; Fu MQ; Chen L; Song XY; Qian JY; Zou YZ; Ma JY; Ge JB
    Eur Rev Med Pharmacol Sci; 2019 Jun; 23(12):5074-5083. PubMed ID: 31298362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of a DNA-AuNP-based satellite network for exosome analysis.
    Gao ML; Yin BC; Ye BC
    Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasensitive and Reversible Nanoplatform of Urinary Exosomes for Prostate Cancer Diagnosis.
    Li P; Yu X; Han W; Kong Y; Bao W; Zhang J; Zhang W; Gu Y
    ACS Sens; 2019 May; 4(5):1433-1441. PubMed ID: 31017389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.
    Greening DW; Xu R; Ji H; Tauro BJ; Simpson RJ
    Methods Mol Biol; 2015; 1295():179-209. PubMed ID: 25820723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matrix Effect in the Isolation of Breast Cancer-Derived Nanovesicles by Immunomagnetic Separation and Electrochemical Immunosensing-A Comparative Study.
    Lima Moura S; Martì M; Pividori MI
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes.
    Xu H; Liao C; Zuo P; Liu Z; Ye BC
    Anal Chem; 2018 Nov; 90(22):13451-13458. PubMed ID: 30234974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation.
    Yamashita T; Takahashi Y; Nishikawa M; Takakura Y
    Eur J Pharm Biopharm; 2016 Jan; 98():1-8. PubMed ID: 26545617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of Exosomes from the Plasma of HIV-1 Positive Individuals.
    Konadu KA; Huang MB; Roth W; Armstrong W; Powell M; Villinger F; Bond V
    J Vis Exp; 2016 Jan; (107):. PubMed ID: 26780239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes.
    Xia Y; Liu M; Wang L; Yan A; He W; Chen M; Lan J; Xu J; Guan L; Chen J
    Biosens Bioelectron; 2017 Jun; 92():8-15. PubMed ID: 28167415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a lateral flow aptamer assay strip for facile identification of theranostic exosomes isolated from human lung carcinoma cells.
    Yu Q; Zhao Q; Wang S; Zhao S; Zhang S; Yin Y; Dong Y
    Anal Biochem; 2020 Apr; 594():113591. PubMed ID: 31968209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of extracellular membranous vesicles for proteomic analysis.
    Mathias RA; Lim JW; Ji H; Simpson RJ
    Methods Mol Biol; 2009; 528():227-42. PubMed ID: 19153696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of Biologically Active Exosomes from Plasma of Patients with Cancer.
    Hong CS; Funk S; Whiteside TL
    Methods Mol Biol; 2017; 1633():257-265. PubMed ID: 28735492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of biologically-active exosomes from human plasma.
    Muller L; Hong CS; Stolz DB; Watkins SC; Whiteside TL
    J Immunol Methods; 2014 Sep; 411():55-65. PubMed ID: 24952243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes.
    Huang L; Wang DB; Singh N; Yang F; Gu N; Zhang XE
    Nanoscale; 2018 Nov; 10(43):20289-20295. PubMed ID: 30371719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods.
    Cao F; Gao Y; Chu Q; Wu Q; Zhao L; Lan T; Zhao L
    Electrophoresis; 2019 Dec; 40(23-24):3092-3098. PubMed ID: 31621929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific and Generic Isolation of Extracellular Vesicles with Magnetic Beads.
    Pedersen KW; Kierulf B; Neurauter A
    Methods Mol Biol; 2017; 1660():65-87. PubMed ID: 28828649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immuno-modified superparamagnetic nanoparticles via host-guest interactions for high-purity capture and mild release of exosomes.
    Cai S; Luo B; Jiang P; Zhou X; Lan F; Yi Q; Wu Y
    Nanoscale; 2018 Aug; 10(29):14280-14289. PubMed ID: 30014056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of immune and chemical precipitation methods for plasma exosome isolation.
    Shtam T; Evtushenko V; Samsonov R; Zabrodskaya Y; Kamyshinsky R; Zabegina L; Verlov N; Burdakov V; Garaeva L; Slyusarenko M; Nikiforova N; Konevega A; Malek A
    PLoS One; 2020; 15(11):e0242732. PubMed ID: 33232386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.