These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30372447)
41. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Juling S; Böhmert L; Lichtenstein D; Oberemm A; Creutzenberg O; Thünemann AF; Braeuning A; Lampen A Food Chem Toxicol; 2018 Mar; 113():255-266. PubMed ID: 29408364 [TBL] [Abstract][Full Text] [Related]
42. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). D'Agata A; Fasulo S; Dallas LJ; Fisher AS; Maisano M; Readman JW; Jha AN Nanotoxicology; 2014 Aug; 8(5):549-58. PubMed ID: 23697396 [TBL] [Abstract][Full Text] [Related]
43. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles. Jimeno-Romero A; Oron M; Cajaraville MP; Soto M; Marigómez I Nanotoxicology; 2016 Oct; 10(8):1168-76. PubMed ID: 27241615 [TBL] [Abstract][Full Text] [Related]
45. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Xie J; Dong W; Liu R; Wang Y; Li Y Nanotoxicology; 2018 Feb; 12(1):18-31. PubMed ID: 29251223 [TBL] [Abstract][Full Text] [Related]
46. An integrated proteomic and metabolomic study on the gender-specific responses of mussels Mytilus galloprovincialis to tetrabromobisphenol A (TBBPA). Ji C; Li F; Wang Q; Zhao J; Sun Z; Wu H Chemosphere; 2016 Feb; 144():527-39. PubMed ID: 26397470 [TBL] [Abstract][Full Text] [Related]
47. Comparative proteomic study of phytotoxic effects of silver nanoparticles and silver ions on tobacco plants. Peharec Štefanić P; Jarnević M; Cvjetko P; Biba R; Šikić S; Tkalec M; Cindrić M; Letofsky-Papst I; Balen B Environ Sci Pollut Res Int; 2019 Aug; 26(22):22529-22550. PubMed ID: 31161543 [TBL] [Abstract][Full Text] [Related]
49. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Katsumiti A; Thorley AJ; Arostegui I; Reip P; Valsami-Jones E; Tetley TD; Cajaraville MP Toxicol In Vitro; 2018 Apr; 48():146-158. PubMed ID: 29408664 [TBL] [Abstract][Full Text] [Related]
50. Elemental profiles of freshwater mussels treated with silver nanoparticles: A metallomic approach. Gagné F; Turcotte P; Pilote M; Auclair J; André C; Gagnon C Comp Biochem Physiol C Toxicol Pharmacol; 2016 Oct; 188():17-23. PubMed ID: 27211012 [TBL] [Abstract][Full Text] [Related]
51. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251 [TBL] [Abstract][Full Text] [Related]
52. Eco-Friendly Synthesis of Silver Nanoparticles Through Economical Methods and Assessment of Toxicity Through Oxidative Stress Analysis in the Labeo Rohita. Khan MS; Qureshi NA; Jabeen F; Asghar MS; Shakeel M; Fakhar-E-Alam M Biol Trace Elem Res; 2017 Apr; 176(2):416-428. PubMed ID: 27587025 [TBL] [Abstract][Full Text] [Related]
54. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687 [TBL] [Abstract][Full Text] [Related]
55. Comparative study of the accumulation and detoxification of Cu (essential metal) and Hg (nonessential metal) in the digestive gland and gills of mussels Mytilus galloprovincialis, using analytical and histochemical techniques. Raftopoulou EK; Dimitriadis VK Chemosphere; 2011 May; 83(8):1155-65. PubMed ID: 21288554 [TBL] [Abstract][Full Text] [Related]
56. Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). Walters CR; Cheng P; Pool E; Somerset V J Toxicol Environ Health A; 2016; 79(2):61-70. PubMed ID: 26730549 [TBL] [Abstract][Full Text] [Related]
57. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399 [TBL] [Abstract][Full Text] [Related]
58. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Kwok KW; Auffan M; Badireddy AR; Nelson CM; Wiesner MR; Chilkoti A; Liu J; Marinakos SM; Hinton DE Aquat Toxicol; 2012 Sep; 120-121():59-66. PubMed ID: 22634717 [TBL] [Abstract][Full Text] [Related]
59. Proteomic analysis and biochemical alterations in marine mussel gills after exposure to the organophosphate flame retardant TDCPP. Sánchez-Marín P; Vidal-Liñán L; Fernández-González LE; Montes R; Rodil R; Quintana JB; Carrera M; Mateos J; Diz AP; Beiras R Aquat Toxicol; 2021 Jan; 230():105688. PubMed ID: 33316748 [TBL] [Abstract][Full Text] [Related]
60. Cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated Ag nanoparticles at two seasons. Duroudier N; Katsumiti A; Mikolaczyk M; Schäfer J; Bilbao E; Cajaraville MP Sci Total Environ; 2021 Jan; 750():141303. PubMed ID: 32871366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]