These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 30372460)
1. The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses. Wang XH; Zhang W; Song DY; Li H; Dong X; Zhang M; Zhao F; Jin ZM; Cheng CK PLoS One; 2018; 13(10):e0206496. PubMed ID: 30372460 [TBL] [Abstract][Full Text] [Related]
2. Understanding the differences in wear testing method standards for total knee replacement. Abdelgaied A; Fisher J; Jennings LM J Mech Behav Biomed Mater; 2022 Aug; 132():105258. PubMed ID: 35609424 [TBL] [Abstract][Full Text] [Related]
3. Biotribology of a mobile bearing posterior stabilised knee design--effect of motion restraint on wear, tibio-femoral kinematics and particles. Grupp TM; Schroeder C; Kyun Kim T; Miehlke RK; Fritz B; Jansson V; Utzschneider S J Biomech; 2014 Jul; 47(10):2415-23. PubMed ID: 24837220 [TBL] [Abstract][Full Text] [Related]
4. In vitro response of the natural cadaver knee to the loading profiles specified in a standard for knee implant wear testing. Sutton LG; Werner FW; Haider H; Hamblin T; Clabeaux JJ J Biomech; 2010 Aug; 43(11):2203-7. PubMed ID: 20451913 [TBL] [Abstract][Full Text] [Related]
5. Computational wear of knee implant polyethylene insert surface under continuous dynamic loading and posterior tibial slope variation based on cadaver experiments with comparative verification. Ozer A BMC Musculoskelet Disord; 2022 Sep; 23(1):871. PubMed ID: 36123647 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses. Wang XH; Li H; Dong X; Zhao F; Cheng CK Clin Biomech (Bristol); 2019 Mar; 63():34-40. PubMed ID: 30802769 [TBL] [Abstract][Full Text] [Related]
7. Backside wear of modular ultra-high molecular weight polyethylene tibial inserts. Conditt MA; Ismaily SK; Alexander JW; Noble PC J Bone Joint Surg Am; 2004 May; 86(5):1031-7. PubMed ID: 15118049 [TBL] [Abstract][Full Text] [Related]
8. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study. Brockett CL; Abdelgaied A; Haythornthwaite T; Hardaker C; Fisher J; Jennings LM Proc Inst Mech Eng H; 2016 May; 230(5):429-39. PubMed ID: 27160561 [TBL] [Abstract][Full Text] [Related]
9. Kinematic evaluation of cruciate-retaining total knee replacement patients during level walking: a comparison with the displacement-controlled ISO standard. Ngai V; Wimmer MA J Biomech; 2009 Oct; 42(14):2363-8. PubMed ID: 19651410 [TBL] [Abstract][Full Text] [Related]
10. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Schwiesau J; Schilling C; Kaddick C; Utzschneider S; Jansson V; Fritz B; Blömer W; Grupp TM Med Eng Phys; 2013 May; 35(5):591-600. PubMed ID: 22922096 [TBL] [Abstract][Full Text] [Related]
11. A new protocol for wear testing of total knee prostheses from real joint kinematic data: Towards a scenario of realistic simulations of daily living activities. Abdel-Jaber S; Belvedere C; Mattia JS; Leardini A; Affatato S J Biomech; 2016 Sep; 49(13):2925-2931. PubMed ID: 27451058 [TBL] [Abstract][Full Text] [Related]
12. Comparative assessment of biomechanics induced by hinge knee prostheses with two different motion axial system. Zhang JY; Zhang HR; Tian DM; Wang F; Ren ZP; Hu YC Artif Organs; 2021 Jun; 45(6):608-615. PubMed ID: 33236372 [TBL] [Abstract][Full Text] [Related]
13. Is load control necessary to produce physiological AP displacement and axial rotation in wear testing of TAR? Ho NC; McCarty CP; Park SH; Williams JR; Gilmartin NF; Ebramzadeh E; Sangiorgio SN J Orthop Res; 2021 Apr; 39(4):797-805. PubMed ID: 33251621 [TBL] [Abstract][Full Text] [Related]
14. Mobile-bearing insert translational and rotational kinematics in a PCL-retaining total knee arthroplasty. Chouteau J; Lerat JL; Testa R; Moyen B; Fessy MH; Banks SA Orthop Traumatol Surg Res; 2009 Jun; 95(4):254-9. PubMed ID: 19442597 [TBL] [Abstract][Full Text] [Related]
15. Posterior stabilized versus cruciate retaining total knee arthroplasty designs: conformity affects the performance reliability of the design over the patient population. Ardestani MM; Moazen M; Maniei E; Jin Z Med Eng Phys; 2015 Apr; 37(4):350-60. PubMed ID: 25703743 [TBL] [Abstract][Full Text] [Related]
16. In-vivo kinematics of knee prostheses patients during level walking compared with the ISO force-controlled simulator standard. Ngai V; Schwenke T; Wimmer MA Proc Inst Mech Eng H; 2009 Oct; 223(7):889-96. PubMed ID: 19908427 [TBL] [Abstract][Full Text] [Related]
17. Development of a specimen-specific in vitro pre-clinical simulation model of the human cadaveric knee with appropriate soft tissue constraints. Liu A; Sanderson WJ; Ingham E; Fisher J; Jennings LM PLoS One; 2020; 15(10):e0238785. PubMed ID: 33052931 [TBL] [Abstract][Full Text] [Related]
18. Increase of tibial slope reduces backside wear in medial mobile bearing unicompartmental knee arthroplasty. Weber P; Schröder C; Schmidutz F; Kraxenberger M; Utzschneider S; Jansson V; Müller PE Clin Biomech (Bristol); 2013 Oct; 28(8):904-9. PubMed ID: 24071058 [TBL] [Abstract][Full Text] [Related]
19. Comparison of ISO standard and TKR patient axial force profiles during the stance phase of gait. Lundberg HJ; Ngai V; Wimmer MA Proc Inst Mech Eng H; 2012 Mar; 226(3):227-34. PubMed ID: 22558837 [TBL] [Abstract][Full Text] [Related]
20. Increase in the tibial slope reduces wear after medial unicompartmental fixed-bearing arthroplasty of the knee. Weber P; Schröder C; Schwiesau J; Utzschneider S; Steinbrück A; Pietschmann MF; Jansson V; Müller PE Biomed Res Int; 2015; 2015():736826. PubMed ID: 25654123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]