BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30372523)

  • 1. Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis.
    Deans RM; Brodribb TJ; Busch FA; Farquhar GD
    New Phytol; 2019 Apr; 222(1):382-395. PubMed ID: 30372523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.
    Meinzer FC; Smith DD; Woodruff DR; Marias DE; McCulloh KA; Howard AR; Magedman AL
    Plant Cell Environ; 2017 Aug; 40(8):1618-1628. PubMed ID: 28426140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species.
    Xiong D; Douthe C; Flexas J
    Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sucrose-to-malate ratio correlates with the faster CO
    Lima VF; Anjos LD; Medeiros DB; Cândido-Sobrinho SA; Souza LP; Gago J; Fernie AR; Daloso DM
    New Phytol; 2019 Sep; 223(4):1873-1887. PubMed ID: 31099898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency.
    McAusland L; Vialet-Chabrand S; Davey P; Baker NR; Brendel O; Lawson T
    New Phytol; 2016 Sep; 211(4):1209-20. PubMed ID: 27214387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes.
    Vico G; Manzoni S; Palmroth S; Katul G
    New Phytol; 2011 Nov; 192(3):640-52. PubMed ID: 21851359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments.
    Jaime R; Serichol C; Alcántara JM; Rey PJ
    Plant Biol (Stuttg); 2014 Mar; 16(2):354-64. PubMed ID: 23957244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice.
    Yamori W; Kusumi K; Iba K; Terashima I
    Plant Cell Environ; 2020 May; 43(5):1230-1240. PubMed ID: 31990076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen addition alleviates water loss of Moso bamboo (Phyllostachys edulis) under drought by affecting light-induced stomatal responses.
    Wu XP; Gao X; Zhang R; Luan J; Wang Y; Liu S
    Sci Total Environ; 2024 Aug; 938():173615. PubMed ID: 38815830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal Blue Light Response Is Present in Early Vascular Plants.
    Doi M; Kitagawa Y; Shimazaki K
    Plant Physiol; 2015 Oct; 169(2):1205-13. PubMed ID: 26307440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are stomata in ferns and allies sluggish? Stomatal responses to CO
    Kübarsepp L; Laanisto L; Niinemets Ü; Talts E; Tosens T
    New Phytol; 2020 Jan; 225(1):183-195. PubMed ID: 31479517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    PLoS One; 2017; 12(9):e0185648. PubMed ID: 28953931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal density and mechanics are critical for high productivity: insights from amphibious ferns.
    Westbrook AS; McAdam SAM
    New Phytol; 2021 Jan; 229(2):877-889. PubMed ID: 32761918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating stomatal and biochemical limitations during photosynthetic induction.
    Deans RM; Farquhar GD; Busch FA
    Plant Cell Environ; 2019 Dec; 42(12):3227-3240. PubMed ID: 31329306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential responses of stomatal kinetics and steady-state conductance to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm.
    Grantz DA; Linscheid BS; Grulke NE
    New Phytol; 2019 Jun; 222(4):1883-1892. PubMed ID: 30740702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought.
    McAdam SAM; Brodribb TJ
    New Phytol; 2013 Apr; 198(2):429-441. PubMed ID: 23421706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.