These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 30372614)

  • 1. Insight on Methane Foam Stability and Texture via Adsorption of Surfactants on Oppositely Charged Nanoparticles.
    Doroudian Rad M; Telmadarreie A; Xu L; Dong M; Bryant SL
    Langmuir; 2018 Nov; 34(47):14274-14285. PubMed ID: 30372614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio.
    Eftekhari M; Schwarzenberger K; Karakashev SI; Grozev NA; Eckert K
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1388-1401. PubMed ID: 37801849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Effect of Nanoparticle-Stabilized Foam on EOR: Nitrogen Foam and Methane Foam.
    Xu Z; Li B; Zhao H; He L; Liu Z; Chen D; Yang H; Li Z
    ACS Omega; 2020 Aug; 5(30):19092-19103. PubMed ID: 32775911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Adsorption of Oppositely Charged SDS:C(12)TAB Mixtures and the Relation to Foam Film Formation and Stability.
    Fauser H; Uhlig M; Miller R; von Klitzing R
    J Phys Chem B; 2015 Oct; 119(40):12877-86. PubMed ID: 26368133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.
    Deleurence R; Parneix C; Monteux C
    Soft Matter; 2014 Sep; 10(36):7088-95. PubMed ID: 25008289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant.
    Cui ZG; Cui YZ; Cui CF; Chen Z; Binks BP
    Langmuir; 2010 Aug; 26(15):12567-74. PubMed ID: 20608686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant Adsorption to Different Fluid Interfaces.
    Bergfreund J; Siegenthaler S; Lutz-Bueno V; Bertsch P; Fischer P
    Langmuir; 2021 Jun; 37(22):6722-6727. PubMed ID: 34030438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.
    Fauser H; von Klitzing R; Campbell RA
    J Phys Chem B; 2015 Jan; 119(1):348-58. PubMed ID: 25474720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines.
    Carl A; Bannuscher A; von Klitzing R
    Langmuir; 2015 Feb; 31(5):1615-22. PubMed ID: 25549277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches.
    Hu X; Li Y; He X; Li C; Li Z; Cao X; Xin X; Somasundaran P
    J Phys Chem B; 2012 Jan; 116(1):160-7. PubMed ID: 22136447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Nanoparticle-Micelle Interactions and Resultant Phase Behavior.
    Ray D; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2018 Jan; 34(1):259-267. PubMed ID: 29202235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles.
    Binks BP; Campbell S; Mashinchi S; Piatko MP
    Langmuir; 2015 Mar; 31(10):2967-78. PubMed ID: 25734773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore- and Core-Scale Insights of Nanoparticle-Stabilized Foam for CO
    Alcorn ZP; Føyen T; Gauteplass J; Benali B; Soyke A; Fernø M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface.
    Jin J; Li X; Geng J; Jing D
    Phys Chem Chem Phys; 2018 Jun; 20(22):15223-15235. PubMed ID: 29789835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge.
    Petkova R; Tcholakova S; Denkov ND
    Langmuir; 2012 Mar; 28(11):4996-5009. PubMed ID: 22360410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions.
    Acharya DP; Gutiérrez JM; Aramaki K; Aratani K; Kunieda H
    J Colloid Interface Sci; 2005 Nov; 291(1):236-43. PubMed ID: 16154135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between bulk aggregates, surface properties and foam stability of nonionic surfactants.
    Mustan F; Politova-Brinkova N; Vinarov Z; Rossetti D; Rayment P; Tcholakova S
    Adv Colloid Interface Sci; 2022 Apr; 302():102618. PubMed ID: 35245855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.