BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30373011)

  • 1. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin.
    Weng Q; Cai X; Zhang F; Wang S
    Food Chem; 2019 Feb; 274():796-802. PubMed ID: 30373011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin.
    Cai X; Weng Q; Lin J; Chen G; Wang S
    Food Chem Toxicol; 2021 May; 151():112110. PubMed ID: 33713747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate.
    Fan Y; Yi J; Zhang Y; Yokoyama W
    J Agric Food Chem; 2017 Dec; 65(49):10812-10819. PubMed ID: 29155582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties.
    Meng R; Wu Z; Xie QT; Cheng JS; Zhang B
    Food Chem; 2021 Mar; 340():127893. PubMed ID: 32889202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of curcumin-loaded nanoparticles using licorice protein isolate from Radix Glycyrrhizae.
    Wang H; Song B; Zhou J; Gao G; Ding Y; Meng X; Ke L; Ding W; Zhang S; Chen T; Rao P
    Int J Biol Macromol; 2024 Jan; 255():128235. PubMed ID: 37981268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox responsive curcumin-loaded human serum albumin nanoparticles: Preparation, characterization and in vitro evaluation.
    Saleh T; Soudi T; Shojaosadati SA
    Int J Biol Macromol; 2018 Jul; 114():759-766. PubMed ID: 29567499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method.
    Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y
    J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin.
    Wang YH; Wang JM; Yang XQ; Guo J; Lin Y
    Food Funct; 2015 Aug; 6(8):2636-45. PubMed ID: 26134524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles.
    Xu P; Qian Y; Wang R; Chen Z; Wang T
    Food Chem; 2022 Sep; 387():132906. PubMed ID: 35413554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques.
    Behbahani ES; Ghaedi M; Abbaspour M; Rostamizadeh K
    Ultrason Sonochem; 2017 Sep; 38():271-280. PubMed ID: 28633826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.
    Yan JK; Qiu WY; Wang YY; Wu JY
    J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity.
    Feng J; Xu H; Zhang L; Wang H; Liu S; Liu Y; Hou W; Li C
    J Agric Food Chem; 2019 Jan; 67(1):379-390. PubMed ID: 30566342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin.
    Luo L; Wu Y; Liu C; Zou Y; Huang L; Liang Y; Ren J; Liu Y; Lin Q
    Food Chem; 2021 Jan; 336():127669. PubMed ID: 32758804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.
    Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y
    Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soy Soluble Polysaccharide as a Nanocarrier for Curcumin.
    Chen FP; Ou SY; Chen Z; Tang CH
    J Agric Food Chem; 2017 Mar; 65(8):1707-1714. PubMed ID: 28185459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity.
    Pan K; Luo Y; Gan Y; Baek SJ; Zhong Q
    Soft Matter; 2014 Sep; 10(35):6820-30. PubMed ID: 25082426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin.
    Zheng D; Huang C; Li B; Zhu X; Liu R; Zhao H
    Int J Biol Macromol; 2021 Dec; 192():471-478. PubMed ID: 34634332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Soy β-Conglycinin Core-Shell Nanoparticles As Outstanding Ecofriendly Nanocarriers for Curcumin.
    Liu LL; Liu PZ; Li XT; Zhang N; Tang CH
    J Agric Food Chem; 2019 Jun; 67(22):6292-6301. PubMed ID: 31117486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.