These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30373011)
1. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Weng Q; Cai X; Zhang F; Wang S Food Chem; 2019 Feb; 274():796-802. PubMed ID: 30373011 [TBL] [Abstract][Full Text] [Related]
2. Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin. Cai X; Weng Q; Lin J; Chen G; Wang S Food Chem Toxicol; 2021 May; 151():112110. PubMed ID: 33713747 [TBL] [Abstract][Full Text] [Related]
3. Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate. Fan Y; Yi J; Zhang Y; Yokoyama W J Agric Food Chem; 2017 Dec; 65(49):10812-10819. PubMed ID: 29155582 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Meng R; Wu Z; Xie QT; Cheng JS; Zhang B Food Chem; 2021 Mar; 340():127893. PubMed ID: 32889202 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and characterization of curcumin-loaded nanoparticles using licorice protein isolate from Radix Glycyrrhizae. Wang H; Song B; Zhou J; Gao G; Ding Y; Meng X; Ke L; Ding W; Zhang S; Chen T; Rao P Int J Biol Macromol; 2024 Jan; 255():128235. PubMed ID: 37981268 [TBL] [Abstract][Full Text] [Related]
6. Redox responsive curcumin-loaded human serum albumin nanoparticles: Preparation, characterization and in vitro evaluation. Saleh T; Soudi T; Shojaosadati SA Int J Biol Macromol; 2018 Jul; 114():759-766. PubMed ID: 29567499 [TBL] [Abstract][Full Text] [Related]
7. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin. Wang YH; Wang JM; Yang XQ; Guo J; Lin Y Food Funct; 2015 Aug; 6(8):2636-45. PubMed ID: 26134524 [TBL] [Abstract][Full Text] [Related]
9. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles. Xu P; Qian Y; Wang R; Chen Z; Wang T Food Chem; 2022 Sep; 387():132906. PubMed ID: 35413554 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of novel TGase-mediated glycosylated whey protein isolate nanoparticles for curcumin delivery. Li D; Jiang Y; Shi J Food Chem; 2024 Dec; 461():140957. PubMed ID: 39182336 [TBL] [Abstract][Full Text] [Related]
11. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797 [TBL] [Abstract][Full Text] [Related]
12. Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537 [TBL] [Abstract][Full Text] [Related]
13. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Behbahani ES; Ghaedi M; Abbaspour M; Rostamizadeh K Ultrason Sonochem; 2017 Sep; 38():271-280. PubMed ID: 28633826 [TBL] [Abstract][Full Text] [Related]
14. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. Yan JK; Qiu WY; Wang YY; Wu JY J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749 [TBL] [Abstract][Full Text] [Related]
15. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity. Feng J; Xu H; Zhang L; Wang H; Liu S; Liu Y; Hou W; Li C J Agric Food Chem; 2019 Jan; 67(1):379-390. PubMed ID: 30566342 [TBL] [Abstract][Full Text] [Related]
16. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Luo L; Wu Y; Liu C; Zou Y; Huang L; Liang Y; Ren J; Liu Y; Lin Q Food Chem; 2021 Jan; 336():127669. PubMed ID: 32758804 [TBL] [Abstract][Full Text] [Related]
17. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436 [TBL] [Abstract][Full Text] [Related]
18. Soy Soluble Polysaccharide as a Nanocarrier for Curcumin. Chen FP; Ou SY; Chen Z; Tang CH J Agric Food Chem; 2017 Mar; 65(8):1707-1714. PubMed ID: 28185459 [TBL] [Abstract][Full Text] [Related]
19. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Pan K; Luo Y; Gan Y; Baek SJ; Zhong Q Soft Matter; 2014 Sep; 10(35):6820-30. PubMed ID: 25082426 [TBL] [Abstract][Full Text] [Related]
20. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin. Zheng D; Huang C; Li B; Zhu X; Liu R; Zhao H Int J Biol Macromol; 2021 Dec; 192():471-478. PubMed ID: 34634332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]