BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30373326)

  • 1. TrypanocidalActivity of Natural Sesquiterpenoids Involves Mitochondrial Dysfunction, ROS Production and Autophagic Phenotype in Trypanosomacruzi.
    Bombaça ACS; Dossow DV; Barbosa JMC; Paz C; Burgos V; Menna-Barreto RFS
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.
    Britta EA; Scariot DB; Falzirolli H; da Silva CC; Ueda-Nakamura T; Dias Filho BP; Borsali R; Nakamura CV
    Parasitology; 2015 Jun; 142(7):978-88. PubMed ID: 25711881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations.
    Rodríguez-Hernández KD; Martínez I; Reyes-Chilpa R; Espinoza B
    Bioorg Chem; 2020 Jul; 100():103894. PubMed ID: 32388434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi.
    Fernandes MC; Da Silva EN; Pinto AV; De Castro SL; Menna-Barreto RF
    Parasitology; 2012 Jan; 139(1):26-36. PubMed ID: 21939585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Bombaça ACS; Viana PG; Santos ACC; Silva TL; Rodrigues ABM; Guimarães ACR; Goulart MOF; da Silva Júnior EN; Menna-Barreto RFS
    Free Radic Biol Med; 2019 Jan; 130():408-418. PubMed ID: 30445126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi.
    Pelizzaro-Rocha KJ; Veiga-Santos P; Lazarin-Bidóia D; Ueda-Nakamura T; Dias Filho BP; Ximenes VF; Silva SO; Nakamura CV
    Microbes Infect; 2011 Nov; 13(12-13):1018-24. PubMed ID: 21683800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction.
    Menna-Barreto RF; Goncalves RL; Costa EM; Silva RS; Pinto AV; Oliveira MF; de Castro SL
    Free Radic Biol Med; 2009 Sep; 47(5):644-53. PubMed ID: 19501647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi.
    Ulloa JL; Spina R; Casasco A; Petray PB; Martino V; Sosa MA; Frank FM; Muschietti LV
    Parasit Vectors; 2017 Nov; 10(1):567. PubMed ID: 29132413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanocidal activity of polysaccharide extract from Genipa americana leaves.
    Souza RODS; Sousa PL; Menezes RRPPB; Sampaio TL; Tessarolo LD; Silva FCO; Pereira MG; Martins AMC
    J Ethnopharmacol; 2018 Jan; 210():311-317. PubMed ID: 28887214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanocidal action of (-)-elatol involves an oxidative stress triggered by mitochondria dysfunction.
    Desoti VC; Lazarin-Bidóia D; Sudatti DB; Pereira RC; Alonso A; Ueda-Nakamura T; Dias Filho BP; Nakamura CV; De Oliveira Silva S
    Mar Drugs; 2012 Aug; 10(8):1631-1646. PubMed ID: 23015766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.
    Lara LS; Moreira CS; Calvet CM; Lechuga GC; Souza RS; Bourguignon SC; Ferreira VF; Rocha D; Pereira MCS
    Eur J Med Chem; 2018 Jan; 144():572-581. PubMed ID: 29289882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanocidal activity of 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone isolated from Kielmeyera coriacea.
    Caleare Ade O; Lazarin-Bidóia D; Cortez DA; Ueda-Nakamura T; Dias Filho BP; Silva Sde O; Nakamura CV
    Parasitol Int; 2013 Oct; 62(5):405-11. PubMed ID: 23680754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: a new therapeutic target?
    Jimenez V; Kemmerling U; Paredes R; Maya JD; Sosa MA; Galanti N
    Phytomedicine; 2014 Sep; 21(11):1411-8. PubMed ID: 25022207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi.
    Ferreira DD; Sousa FS; Costa-Silva TA; Reimão JQ; Torrecilhas AC; Johns DM; Sear CE; Honorio KM; Lago JHG; Anderson EA; Tempone AG
    Eur J Med Chem; 2019 Aug; 176():162-174. PubMed ID: 31103897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico study of structural and geometrical requirements of natural sesquiterpene lactones with trypanocidal activity.
    Fabian L; Sulsen V; Frank F; Cazorla S; Malchiodi E; Martino V; Lizarraga E; Catalán C; Moglioni A; Muschietti L; Finkielsztein L
    Mini Rev Med Chem; 2013 Aug; 13(10):1407-14. PubMed ID: 23815577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of natural and synthetic polygodial derivatives against
    Turner DN; Just J; Dasari R; Smith JA; Bissember AC; Kornienko A; Rogelj S
    Nat Prod Res; 2021 Mar; 35(5):792-795. PubMed ID: 31032640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi.
    Ribeiro TS; Freire-de-Lima L; Previato JO; Mendonça-Previato L; Heise N; de Lima ME
    Bioorg Med Chem Lett; 2004 Jul; 14(13):3555-8. PubMed ID: 15177472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitrypanosomal activity of epi-polygodial from Drimys brasiliensis and its effects in cellular membrane models at the air-water interface.
    Gonçalves GEG; Morais TR; Gomes KS; Costa-Silva TA; Tempone AG; Lago JHG; Caseli L
    Bioorg Chem; 2019 Mar; 84():186-191. PubMed ID: 30502630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiproliferative activity of the dibenzylideneacetone derivate (E)-3-ethyl-4-(4-nitrophenyl)but‑3-en-2-one in Trypanosoma cruzi.
    de Paula JC; Bakoshi ABK; Lazarin-Bidóia D; Ud Din Z; Rodrigues-Filho E; Ueda-Nakamura T; Nakamura CV
    Acta Trop; 2020 Nov; 211():105653. PubMed ID: 32777226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.