BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30373661)

  • 1. Link between short tandem repeats and translation initiation site selection.
    Arabfard M; Kavousi K; Delbari A; Ohadi M
    Hum Genomics; 2018 Oct; 12(1):47. PubMed ID: 30373661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem repeats ubiquitously flank and contribute to translation initiation sites.
    Maddi AMA; Kavousi K; Arabfard M; Ohadi H; Ohadi M
    BMC Genom Data; 2022 Jul; 23(1):59. PubMed ID: 35896982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats.
    Nazaripanah N; Adelirad F; Delbari A; Sahaf R; Abbasi-Asl T; Ohadi M
    Hum Genomics; 2018 Apr; 12(1):17. PubMed ID: 29622039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.
    Namdar-Aligoodarzi P; Mohammadparast S; Zaker-Kandjani B; Talebi Kakroodi S; Jafari Vesiehsari M; Ohadi M
    Gene; 2015 Sep; 569(1):88-94. PubMed ID: 26022613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STaRRRT: a table of short tandem repeats in regulatory regions of the human genome.
    Bolton KA; Ross JP; Grice DM; Bowden NA; Holliday EG; Avery-Kiejda KA; Scott RJ
    BMC Genomics; 2013 Nov; 14():795. PubMed ID: 24228761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants.
    Li YR; Liu MJ
    Genome Res; 2020 Oct; 30(10):1418-1433. PubMed ID: 32973042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini.
    Na CH; Barbhuiya MA; Kim MS; Verbruggen S; Eacker SM; Pletnikova O; Troncoso JC; Halushka MK; Menschaert G; Overall CM; Pandey A
    Genome Res; 2018 Jan; 28(1):25-36. PubMed ID: 29162641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.
    Bushehri A; Barez MR; Mansouri SK; Biglarian A; Ohadi M
    Gene; 2016 Aug; 587(1):83-90. PubMed ID: 27108803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation initiation at AUG and non-AUG triplets in plants.
    Fang JC; Liu MJ
    Plant Sci; 2023 Oct; 335():111822. PubMed ID: 37574140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting.
    Fritsch C; Herrmann A; Nothnagel M; Szafranski K; Huse K; Schumann F; Schreiber S; Platzer M; Krawczak M; Hampe J; Brosch M
    Genome Res; 2012 Nov; 22(11):2208-18. PubMed ID: 22879431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary trend of exceptionally long human core promoter short tandem repeats.
    Ohadi M; Mohammadparast S; Darvish H
    Gene; 2012 Oct; 507(1):61-7. PubMed ID: 22796130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel islands of GGC and GCC repeats coincide with human evolution.
    Tajeddin N; Arabfard M; Alizadeh S; Salesi M; Khamse S; Delbari A; Ohadi M
    Gene; 2024 Apr; 902():148194. PubMed ID: 38262548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide detection of short tandem repeat expansions by long-read sequencing.
    Liu Q; Tong Y; Wang K
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):542. PubMed ID: 33371889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomic view of short tandem repeats.
    Gymrek M
    Curr Opin Genet Dev; 2017 Jun; 44():9-16. PubMed ID: 28213161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TITER: predicting translation initiation sites by deep learning.
    Zhang S; Hu H; Jiang T; Zhang L; Zeng J
    Bioinformatics; 2017 Jul; 33(14):i234-i242. PubMed ID: 28881981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved
    Wu TY; Li YR; Chang KJ; Fang JC; Urano D; Liu MJ
    Genome Res; 2024 Mar; 34(2):272-285. PubMed ID: 38479836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing.
    Doi K; Monjo T; Hoang PH; Yoshimura J; Yurino H; Mitsui J; Ishiura H; Takahashi Y; Ichikawa Y; Goto J; Tsuji S; Morishita S
    Bioinformatics; 2014 Mar; 30(6):815-22. PubMed ID: 24215022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short tandem repeats in human exons: a target for disease mutations.
    Madsen BE; Villesen P; Wiuf C
    BMC Genomics; 2008 Sep; 9():410. PubMed ID: 18789129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection for the prediction of translation initiation sites.
    Li GL; Leong TY
    Genomics Proteomics Bioinformatics; 2005 May; 3(2):73-83. PubMed ID: 16393144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native functions of short tandem repeats.
    Wright SE; Todd PK
    Elife; 2023 Mar; 12():. PubMed ID: 36940239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.