BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30373769)

  • 1. Membrane Potential Correlates of Network Decorrelation and Improved SNR by Cholinergic Activation in the Somatosensory Cortex.
    Meir I; Katz Y; Lampl I
    J Neurosci; 2018 Dec; 38(50):10692-10708. PubMed ID: 30373769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.
    Chaves-Coira I; Barros-Zulaica N; Rodrigo-Angulo M; Núñez Á
    Front Neural Circuits; 2016; 10():28. PubMed ID: 27147975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat.
    Baskerville KA; Schweitzer JB; Herron P
    Neuroscience; 1997 Oct; 80(4):1159-69. PubMed ID: 9284068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo.
    Takata N; Mishima T; Hisatsune C; Nagai T; Ebisui E; Mikoshiba K; Hirase H
    J Neurosci; 2011 Dec; 31(49):18155-65. PubMed ID: 22159127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus basalis of Meynert modulates signal processing in rat layer 5 somatosensory cortex but leads to memory impairment and tactile discrimination deficits following lesion.
    Goshadrou F; Sadeghi B
    Behav Brain Res; 2020 May; 386():112608. PubMed ID: 32194192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying desynchronization of cholinergic-evoked thalamic network activity.
    Pita-Almenar JD; Yu D; Lu HC; Beierlein M
    J Neurosci; 2014 Oct; 34(43):14463-74. PubMed ID: 25339757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic upregulation by optogenetic stimulation of nucleus basalis after photothrombotic stroke in forelimb somatosensory cortex improves endpoint and motor but not sensory control of skilled reaching in mice.
    Mirza Agha B; Akbary R; Ghasroddashti A; Nazari-Ahangarkolaee M; Whishaw IQ; Mohajerani MH
    J Cereb Blood Flow Metab; 2021 Jul; 41(7):1608-1622. PubMed ID: 33103935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex.
    Fernandez FR; Noueihed J; White JA
    J Neurosci; 2019 Mar; 39(12):2221-2237. PubMed ID: 30655351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective optogenetic stimulation of cholinergic axons in neocortex.
    Kalmbach A; Hedrick T; Waters J
    J Neurophysiol; 2012 Apr; 107(7):2008-19. PubMed ID: 22236708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4.
    Dasgupta R; Seibt F; Beierlein M
    J Neurosci; 2018 Jun; 38(23):5338-5350. PubMed ID: 29739869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions of the nucleus basalis magnocellularis (Meynert) induce enhanced somatosensory responses and tactile hypersensitivity in rats.
    Dezawa S; Nagasaka K; Watanabe Y; Takashima I
    Exp Neurol; 2021 Jan; 335():113493. PubMed ID: 33011194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic noise-photostimulation on the brain increases somatosensory spike firing responses.
    Huidobro N; De la Torre-Valdovinos B; Mendez A; Treviño M; Arias-Carrion O; Chavez F; Gutierrez R; Manjarrez E
    Neurosci Lett; 2018 Jan; 664():51-57. PubMed ID: 29128628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential correlates of sensory perception in mouse barrel cortex.
    Sachidhanandam S; Sreenivasan V; Kyriakatos A; Kremer Y; Petersen CC
    Nat Neurosci; 2013 Nov; 16(11):1671-7. PubMed ID: 24097038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons.
    Faust TW; Assous M; Tepper JM; Koós T
    J Neurosci; 2016 Sep; 36(36):9505-11. PubMed ID: 27605623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.
    Ljubojevic V; Luu P; Gill PR; Beckett LA; Takehara-Nishiuchi K; De Rosa E
    J Neurosci; 2018 Apr; 38(16):3988-4005. PubMed ID: 29572433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions.
    Petersen CC; Grinvald A; Sakmann B
    J Neurosci; 2003 Feb; 23(4):1298-309. PubMed ID: 12598618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.
    Avermann M; Tomm C; Mateo C; Gerstner W; Petersen CC
    J Neurophysiol; 2012 Jun; 107(11):3116-34. PubMed ID: 22402650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity.
    Ramaswamy S; Colangelo C; Markram H
    Front Neural Circuits; 2018; 12():77. PubMed ID: 30356701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cholinergic depletion on neural activity in different laminae of the rat barrel cortex.
    Herron P; Schweitzer JB
    Brain Res; 2000 Jul; 872(1-2):71-6. PubMed ID: 10924677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.