BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30373830)

  • 1. Gene-guided discovery and engineering of branched cyclic peptides in plants.
    Kersten RD; Weng JK
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10961-E10969. PubMed ID: 30373830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases.
    Chigumba DN; Mydy LS; de Waal F; Li W; Shafiq K; Wotring JW; Mohamed OG; Mladenovic T; Tripathi A; Sexton JZ; Kautsar S; Medema MH; Kersten RD
    Nat Chem Biol; 2022 Jan; 18(1):18-28. PubMed ID: 34811516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-Guided Discovery and Ribosomal Biosynthesis of Moroidin Peptides.
    Kersten RD; Mydy LS; Fallon TR; de Waal F; Shafiq K; Wotring JW; Sexton JZ; Weng JK
    J Am Chem Soc; 2022 May; 144(17):7686-7692. PubMed ID: 35438481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis.
    Mydy LS; Hungerford J; Chigumba DN; Konwerski JR; Jantzi SC; Wang D; Smith JL; Kersten RD
    Nat Chem Biol; 2024 Apr; 20(4):530-540. PubMed ID: 38355722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome mining for ribosomally synthesized natural products.
    Velásquez JE; van der Donk WA
    Curr Opin Chem Biol; 2011 Feb; 15(1):11-21. PubMed ID: 21095156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Widely Distributed Biosynthetic Cassette Is Responsible for Diverse Plant Side Chain Cross-Linked Cyclopeptides.
    Lima ST; Ampolini BG; Underwood EB; Graf TN; Earp CE; Khedi IC; Pasquale MA; Chekan JR
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202218082. PubMed ID: 36529706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated genome mining of ribosomal peptide natural products.
    Mohimani H; Kersten RD; Liu WT; Wang M; Purvine SO; Wu S; Brewer HM; Pasa-Tolic L; Bandeira N; Moore BS; Pevzner PA; Dorrestein PC
    ACS Chem Biol; 2014 Jul; 9(7):1545-51. PubMed ID: 24802639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mass spectrometry-guided genome mining approach for natural product peptidogenomics.
    Kersten RD; Yang YL; Xu Y; Cimermancic P; Nam SJ; Fenical W; Fischbach MA; Moore BS; Dorrestein PC
    Nat Chem Biol; 2011 Oct; 7(11):794-802. PubMed ID: 21983601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
    Chekan JR; Estrada P; Covello PS; Nair SK
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6551-6556. PubMed ID: 28584123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from Chondromyces crocatus.
    Viehrig K; Surup F; Volz C; Herrmann J; Abou Fayad A; Adam S; Köhnke J; Trauner D; Müller R
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7407-7410. PubMed ID: 28544148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthetic Gene Cluster of a d-Tryptophan-Containing Lasso Peptide, MS-271.
    Feng Z; Ogasawara Y; Nomura S; Dairi T
    Chembiochem; 2018 Oct; 19(19):2045-2048. PubMed ID: 29974638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal Synthesis of Natural-Product-Like Bicyclic Peptides in Escherichia coli.
    Bionda N; Fasan R
    Chembiochem; 2015 Sep; 16(14):2011-6. PubMed ID: 26179106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies.
    Bashiruddin NK; Suga H
    Curr Opin Chem Biol; 2015 Feb; 24():131-8. PubMed ID: 25483262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.