BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30374054)

  • 1. Heat-induced Bone Diagenesis Probed by Vibrational Spectroscopy.
    Marques MPM; Mamede AP; Vassalo AR; Makhoul C; Cunha E; Gonçalves D; Parker SF; Batista de Carvalho LAE
    Sci Rep; 2018 Oct; 8(1):15935. PubMed ID: 30374054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Bioapatite Hydroxyls for Research on Archeological Burned Bone.
    Mamede AP; Vassalo AR; Piga G; Cunha E; Parker SF; Marques MPM; Batista de Carvalho LAE; Gonçalves D
    Anal Chem; 2018 Oct; 90(19):11556-11563. PubMed ID: 30176725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First analysis of ancient burned human skeletal remains probed by neutron and optical vibrational spectroscopy.
    Festa G; Andreani C; Baldoni M; Cipollari V; Martínez-Labarga C; Martini F; Rickards O; Rolfo MF; Sarti L; Volante N; Senesi R; Stasolla FR; Parker SF; Vassalo AR; Mamede AP; Batista de Carvalho LAE; Marques MPM
    Sci Adv; 2019 Jun; 5(6):eaaw1292. PubMed ID: 31259242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling of human burned bones: oxidising versus reducing conditions.
    Marques MPM; Gonçalves D; Mamede AP; Coutinho T; Cunha E; Kockelmann W; Parker SF; Batista de Carvalho LAE
    Sci Rep; 2021 Jan; 11(1):1361. PubMed ID: 33446708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burned and buried: A vibrational spectroscopy analysis of burial-related diagenetic changes of heat-altered human bones.
    Rosa J; Vassalo AR; Amarante A; Batista de Carvalho LAE; Marques MPM; Ferreira MT; Gonçalves D
    Am J Biol Anthropol; 2023 Mar; 180(3):534-547. PubMed ID: 36790610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials from human bone - probing organic fraction removal by chemical and enzymatic methods.
    Mamede AP; Vassalo AR; Cunha E; Gonçalves D; Parker SF; Batista de Carvalho LAE; Marques MPM
    RSC Adv; 2018 Jul; 8(48):27260-27267. PubMed ID: 35539969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3(PO4)2(OH)4⋅2(H2O) from Brazil.
    Frost RL; Scholz R; López A; Lana C; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():164-9. PubMed ID: 24603114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vibrational spectroscopic study of the phosphate mineral Wardite NaAl₃(PO₄)₂(OH)₄·2(H₂O).
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():155-63. PubMed ID: 22472131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confirmation of the assignment of vibrations of goethite: an ATR and IES study of goethite structure.
    Liu H; Chen T; Qing C; Xie Q; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():154-9. PubMed ID: 23933552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.
    Frost RL; López A; Xi Y; Granja A; Scholz R; Lima RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():309-15. PubMed ID: 23778171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.
    Frost RL; López A; Scholz R; Xi Y; Lana C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():408-12. PubMed ID: 24682056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).
    Frost RL; Scholz R; López A; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():243-8. PubMed ID: 24491665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the phosphate mineral kapundaite NaCa(Fe3+)4(PO4)4(OH)3⋅5(H2O) using SEM/EDX and vibrational spectroscopic methods.
    Frost RL; López A; Xi Y; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():400-4. PubMed ID: 24317266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human bone probed by neutron diffraction: the burning process.
    Mamede AP; Marques MPM; Vassalo AR; Cunha E; Gonçalves D; Parker SF; Kockelmann W; Batista de Carvalho LAE
    RSC Adv; 2019 Nov; 9(63):36640-36648. PubMed ID: 35539083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopy of N-phenylmaleimide.
    Parker SF
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(3):544-9. PubMed ID: 16157505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational and vibrational reassessment of solid paracetamol.
    Amado AM; Azevedo C; Ribeiro-Claro PJA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():431-438. PubMed ID: 28494395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman and infrared spectroscopic characterization of the phosphate mineral paravauxite Fe2+Al2(PO4)2(OH)2.8H2O.
    Frost RL; Scholz R; Lópes A; Xi Y; Gobac ZŽ; Horta LF
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():491-6. PubMed ID: 23973599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopic study of multianion mineral clinotyrolite Ca₂Cu9[(As,S)O₄]₄(OH)10·10(H₂O).
    Frost RL; Xi Y; Couperthwaite SJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():258-62. PubMed ID: 22634419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of exogenous substances on the color of heated bones.
    Rosa J; Batista de Carvalho LAE; Gil FPSC; Marques MPM; Ferreira MT; Gonçalves D
    Am J Biol Anthropol; 2024 Jun; 184(2):e24905. PubMed ID: 38291805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.