These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30374500)

  • 1. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications.
    Nair MP; Teo AJT; Li KHH
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of MgxZn1-xO thin film bulk acoustic wave devices.
    Wittstruck RH; Tong X; Emanetoglu NW; Wu P; Chen Y; Zhu J; Muthukumar S; Lu Y; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1272-8. PubMed ID: 14609066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance matched channel walls in acoustofluidic systems.
    Leibacher I; Schatzer S; Dual J
    Lab Chip; 2014 Feb; 14(3):463-70. PubMed ID: 24310918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation.
    Lickert F; Ohlin M; Bruus H; Ohlsson P
    J Acoust Soc Am; 2021 Jun; 149(6):4281. PubMed ID: 34241446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.
    Qiu Y; Gigliotti JV; Wallace M; Griggio F; Demore CE; Cochran S; Trolier-McKinstry S
    Sensors (Basel); 2015 Apr; 15(4):8020-41. PubMed ID: 25855038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating materials parameters in thin-film BAW resonators using measured dispersion curves.
    Makkonen T; Pensala T; Vartiainen J; Knuuttila JV; Kaitila J; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):42-51. PubMed ID: 14995015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes.
    Steckel AG; Bruus H
    J Acoust Soc Am; 2021 Jul; 150(1):634. PubMed ID: 34340467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically Compatible Lead-Free Piezoelectric Composite for Acoustophoresis Based Particle Manipulation Techniques.
    Janusas T; Urbaite S; Palevicius A; Nasiri S; Janusas G
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the local pressure amplitude in microchannel acoustophoresis.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Lab Chip; 2010 Mar; 10(5):563-70. PubMed ID: 20162231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers.
    Bodé WN; Jiang L; Laurell T; Bruus H
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing.
    Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis.
    Antfolk M; Muller PB; Augustsson P; Bruus H; Laurell T
    Lab Chip; 2014 Aug; 14(15):2791-9. PubMed ID: 24895052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.
    Çetin B; Özer MB; Çağatay E; Büyükkoçak S
    Biomicrofluidics; 2016 Jan; 10(1):014112. PubMed ID: 26865905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.