These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3037451)

  • 1. FMRF-NH2-like factor from neurohaemal organ modulates neuromuscular transmission in the locust.
    Walther C; Schiebe M
    Neurosci Lett; 1987 Jun; 77(2):209-14. PubMed ID: 3037451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and partial purification of different factors with contraction-potentiating activities from neurohaemal organs of the locust.
    Schiebe M; Orchard I; Watts R; Lange AB; Atwood HL
    J Comp Neurol; 1990 Jan; 291(2):305-12. PubMed ID: 2298936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic and non-synaptic effects of molluscan cardioexcitatory neuropeptides on locust skeletal muscle.
    Walther C; Schiebe M; Voigt KH
    Neurosci Lett; 1984 Mar; 45(1):99-104. PubMed ID: 6728308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting membrane properties of locust muscle and their modulation I. Actions of the neuropeptides YGGFMRFamide and proctolin.
    Walther C; Zittlau KE; Murck H; Voigt K
    J Neurophysiol; 1998 Aug; 80(2):771-84. PubMed ID: 9705468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gonadotropin-releasing hormone (GnRF), molluscan cardioexcitatory peptide (FMRFamide), enkephalin and related neuropeptides affect goldfish retinal ganglion cell activity.
    Walker SE; Stell WK
    Brain Res; 1986 Oct; 384(2):262-73. PubMed ID: 3535991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of myomodulin and structurally related neuropeptides on skeletal neuromuscular transmission in the locust.
    Evans PD
    J Exp Biol; 1994 May; 190():253-64. PubMed ID: 7964394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of high-threshold transmission between heart interneurons of the medicinal leech by FMRF-NH2.
    Simon TW; Schmidt J; Calabrese RL
    J Neurophysiol; 1994 Feb; 71(2):454-66. PubMed ID: 7909838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity in neurohaemal organs for homologous neurosecretory cells in different insect species as demonstrated by immunocytochemistry with an antiserum to molluscan cardioexcitatory peptide.
    Veenstra JA
    Neurosci Lett; 1987 Jan; 73(1):33-7. PubMed ID: 3104837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction.
    Hewes RS; Snowdeal EC; Saitoe M; Taghert PH
    J Neurosci; 1998 Sep; 18(18):7138-51. PubMed ID: 9736637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FMRFamide-like peptides in the locust: distribution, partial characterization and bioactivity.
    Robb S; Evans PD
    J Exp Biol; 1990 Mar; 149():335-60. PubMed ID: 1969917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pericardial peptides enhance synaptic transmission and tension in phasic extensor muscles of crayfish.
    Mercier AJ; Schiebe M; Atwood HL
    Neurosci Lett; 1990 Mar; 111(1-2):92-8. PubMed ID: 2336198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacology of aminergic receptors mediating an elevation in cyclic AMP and release of hormone from locust neurosecretory cells.
    Orchard I; Gole JW; Downer RG
    Brain Res; 1983 Dec; 288(1-2):349-53. PubMed ID: 6140980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FMRFamide-like immunoreactivity in the metathoracic ganglion of the locust (Schistocerca gregaria).
    Walther C; Schäfer S
    Cell Tissue Res; 1988 Aug; 253(2):489-91. PubMed ID: 3409299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FMRFamide-related peptides potentiate transmission at the squid giant synapse.
    Cottrell GA; Lin JW; Llinas R; Price DA; Sugimori M; Stanley EF
    Exp Physiol; 1992 Nov; 77(6):881-9. PubMed ID: 1362646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of octopamine and synephrine stereoisomers on octopaminergic receptor subtypes in locust skeletal muscle.
    Evans PD; Thonoor CM; Midgley JM
    J Pharm Pharmacol; 1988 Dec; 40(12):855-61. PubMed ID: 2907578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of SchistoFLRFamide on contractions of locust midgut.
    Lange AB; Orchard I
    Peptides; 1998; 19(3):459-67. PubMed ID: 9533633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple receptor types for octopamine in the locust.
    Evans PD
    J Physiol; 1981 Sep; 318():99-122. PubMed ID: 6275071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular transmission in an insect visceral muscle.
    Orchard I; Lange AB
    J Neurobiol; 1986 Sep; 17(5):359-72. PubMed ID: 2877049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans.
    Djokaj S; Cooper RL; Rathmayer W
    J Comp Physiol A; 2001 Mar; 187(2):145-54. PubMed ID: 15524002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modulation of skeletal muscle contraction by FMRFamide-related peptides of the locust.
    Lange AB; Cheung IL
    Peptides; 1999 Dec; 20(12):1411-8. PubMed ID: 10698115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.