These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30374599)

  • 1. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions.
    Veselá S; Psikuta A; Frijns AJH
    Int J Biometeorol; 2018 Dec; 62(12):2215-2229. PubMed ID: 30374599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local thermal sensation modeling-a review on the necessity and availability of local clothing properties and local metabolic heat production.
    Veselá S; Kingma BR; Frijns AJ
    Indoor Air; 2017 Mar; 27(2):261-272. PubMed ID: 27485255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins.
    Al-ajmi FF; Loveday DL; Bedwell KH; Havenith G
    Appl Ergon; 2008 May; 39(3):407-14. PubMed ID: 18045571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y; Wang F; Wan X; Song G; Shi W; Zhang C
    Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.
    Lu Y; Wang F; Wan X; Song G; Zhang C; Shi W
    Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response.
    Psikuta A; Mert E; Annaheim S; Rossi RM
    Int J Biometeorol; 2018 Jul; 62(7):1121-1134. PubMed ID: 29478101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.
    Qian X; Fan J
    Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between clothing ventilation and thermal insulation.
    Bouskill LM; Havenith G; Kuklane K; Parsons KC; Withey WR
    AIHA J (Fairfax, Va); 2002; 63(3):262-8. PubMed ID: 12173174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode.
    Oliveira AV; Gaspar AR; Quintela DA
    Appl Ergon; 2011 Nov; 42(6):890-9. PubMed ID: 21414602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manikin measurements versus wear trials of cold protective clothing (Subzero project).
    Meinander H; Anttonen H; Bartels V; Holmér I; Reinertsen RE; Soltynski K; Varieras S
    Eur J Appl Physiol; 2004 Sep; 92(6):619-21. PubMed ID: 15138839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin.
    Meinander H; Hellsten M
    Int J Occup Saf Ergon; 2004; 10(3):263-9. PubMed ID: 15377411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Database of Static Thermal Insulation and Evaporative Resistance Values of Dutch Firefighter Clothing Items and Ensembles.
    Kuklane K; Eggeling J; Kemmeren M; Heus R
    Biology (Basel); 2022 Dec; 11(12):. PubMed ID: 36552322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New functions and applications of walter, the sweating fabric manikin.
    Fan J; Qian X
    Eur J Appl Physiol; 2004 Sep; 92(6):641-4. PubMed ID: 15138829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M; Li J
    Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.
    Wu YS; Fan JT; Yu W
    Ergonomics; 2011 Mar; 54(3):301-13. PubMed ID: 21390960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods.
    Oliveira AV; Gaspar AR; Quintela DA
    Eur J Appl Physiol; 2008 Nov; 104(4):679-88. PubMed ID: 18633635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).
    Lu Y; Wang F; Peng H; Shi W; Song G
    Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of skin surface temperature distribution of thermal manikin on clothing thermal insulation.
    Takahashi-Nishimura M; Tanabe S; Hasebe Y
    Appl Human Sci; 1997 Sep; 16(5):181-9. PubMed ID: 9431704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.