BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30374679)

  • 1. Acrylamide aggravates cognitive deficits at night period via the gut-brain axis by reprogramming the brain circadian clock.
    Tan X; Ye J; Liu W; Zhao B; Shi X; Zhang C; Liu Z; Liu X
    Arch Toxicol; 2019 Feb; 93(2):467-486. PubMed ID: 30374679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment.
    Liu Y; Zhang X; Yan D; Wang Y; Wang N; Liu Y; Tan A; Chen X; Yan H
    Toxicol Appl Pharmacol; 2020 Apr; 393():114949. PubMed ID: 32147541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin.
    Yan D; Yao J; Liu Y; Zhang X; Wang Y; Chen X; Liu L; Shi N; Yan H
    Brain Behav Immun; 2018 Jul; 71():66-80. PubMed ID: 29704550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylamide Defects the Expression Pattern of the Circadian Clock and Mitochondrial Dynamics in C57BL/6J Mice Liver and HepG2 Cells.
    Tan X; Zhao T; Wang Z; Wang J; Wang Y; Liu Z; Liu X
    J Agric Food Chem; 2018 Oct; 66(39):10252-10266. PubMed ID: 30196695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS.
    Mi Y; Qi G; Fan R; Qiao Q; Sun Y; Gao Y; Liu X
    FASEB J; 2017 Nov; 31(11):4998-5011. PubMed ID: 28739640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain.
    Farag OM; Abd-Elsalam RM; Ogaly HA; Ali SE; El Badawy SA; Alsherbiny MA; Li CG; Ahmed KA
    Neurochem Res; 2021 Apr; 46(4):819-842. PubMed ID: 33439429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).
    Genzer Y; Dadon M; Burg C; Chapnik N; Froy O
    Mol Cell Endocrinol; 2016 Jul; 430():49-55. PubMed ID: 27113028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide.
    Lee S; Park HR; Lee JY; Cho JH; Song HM; Kim AH; Lee W; Lee Y; Chang SC; Kim HS; Lee J
    J Toxicol Environ Health A; 2018; 81(9):254-265. PubMed ID: 29473799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subchronic exposure to acrylamide caused behaviour disorders and related pathological and molecular changes in rat cerebellum.
    Liu Y; Yan D; Wang Y; Zhang X; Wang N; Jiao Y; Yan H
    Toxicol Lett; 2021 Apr; 340():23-32. PubMed ID: 33421551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoguanidine reverses cognitive deficits and activation of cAMP/CREB/BDNF pathway in mouse hippocampus after traumatic brain injury (TBI).
    Wang W; Shen M; Sun K; Wang Y; Wang X; Jin X; Xu J; Ding L; Sun X
    Brain Inj; 2018; 32(13-14):1858-1865. PubMed ID: 30346862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subchronic Acrylamide Exposure Activates PERK-eIF2α Signaling Pathway and Induces Synaptic Impairment in Rat Hippocampus.
    Yan D; Dai L; Zhang X; Wang Y; Yan H
    ACS Chem Neurosci; 2022 May; 13(9):1370-1381. PubMed ID: 35442627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage.
    Wang L; Liu Y; Gao H; Ge S; Yao X; Liu C; Tan X
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats.
    Zhang L; Jin C; Lu X; Yang J; Wu S; Liu Q; Chen R; Bai C; Zhang D; Zheng L; Du Y; Cai Y
    Toxicology; 2014 Sep; 323():95-108. PubMed ID: 24973631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of the cerebral cortex of acrylamide-exposed wild-type and IL-1β-knockout mice.
    Fergany A; Zong C; Ekuban FA; Wu B; Ueha S; Shichino S; Matsushima K; Iwakura Y; Ichihara S; Ichihara G
    Arch Toxicol; 2024 Jan; 98(1):181-205. PubMed ID: 37971544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic acrylamide exposure resulted in dopaminergic neuron loss, neuroinflammation and motor impairment in rats.
    Liu Y; Wang Y; Zhang X; Jiao Y; Duan L; Dai L; Yan H
    Toxicol Appl Pharmacol; 2022 Sep; 451():116190. PubMed ID: 35917840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic oral acrylamide exposure on incremental repeated acquisition (learning) task performance in Fischer 344 rats.
    Garey J; Paule MG
    Neurotoxicol Teratol; 2010; 32(2):220-5. PubMed ID: 19846048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease.
    Sierksma AS; Rutten K; Sydlik S; Rostamian S; Steinbusch HW; van den Hove DL; Prickaerts J
    Neuropharmacology; 2013 Jan; 64():124-36. PubMed ID: 22771768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats.
    Li H; Song S; Wang Y; Huang C; Zhang F; Liu J; Hong JS
    Neurotox Res; 2019 Feb; 35(2):421-431. PubMed ID: 30328585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Circadian Clock in the Inferior Colliculus and Its Dysregulation by Noise Exposure.
    Park JS; Cederroth CR; Basinou V; Meltser I; Lundkvist G; Canlon B
    J Neurosci; 2016 May; 36(20):5509-19. PubMed ID: 27194331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylamide induces adipocyte differentiation and obesity in mice.
    Lee HW; Pyo S
    Chem Biol Interact; 2019 Jan; 298():24-34. PubMed ID: 30409764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.