These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30374723)

  • 1. Sludge char-to-fuel approaches based on the catalytic pyrolysis II: heat release.
    Qin J; Jiao Y; Li X; Liu Y; Lei Y; Gao J
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36581-36588. PubMed ID: 30374723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sludge char-to-fuel approaches based on the pyrolysis III: Adding protein without dehydration.
    Qin J; Chen Z; Jiao Y; Li X; Liu Y; Gao J
    Waste Manag; 2019 Jun; 93():47-53. PubMed ID: 31235056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning sewage sludge into sintering fuel based on the pyrolysis I: lipid content and residual metal.
    Qin J; Wang C; Li X; Jiao Y; Li X; Qian H
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26912-26924. PubMed ID: 31302887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the higher heating value of syngas pyrolyzed from sewage sludge using an artificial neural network.
    Li H; Xu Q; Xiao K; Yang J; Liang S; Hu J; Hou H; Liu B
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):785-797. PubMed ID: 31811605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex-situ catalytic pyrolysis of wastewater sewage sludge - A micro-pyrolysis study.
    Wang K; Zheng Y; Zhu X; Brewer CE; Brown RC
    Bioresour Technol; 2017 May; 232():229-234. PubMed ID: 28236757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.
    Wang Z; Chen D; Song X; Zhao L
    Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.
    Li T; Guo F; Li X; Liu Y; Peng K; Jiang X; Guo C
    Waste Manag; 2018 Jun; 76():544-554. PubMed ID: 29653883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char.
    Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT
    Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.
    Adrados A; De Marco I; Lopez-Urionabarrenechea A; Caballero BM; Laresgoiti MF
    Waste Manag; 2013 Jan; 33(1):52-9. PubMed ID: 23098814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive utilization of the pyrolysis products from sewage sludge.
    Xu WY; Wu D
    Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2015 Mar; 179():602-605. PubMed ID: 25542402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield.
    Yu G; Chen D; Arena U; Huang Z; Dai X
    Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.
    Ma R; Huang X; Zhou Y; Fang L; Sun S; Zhang P; Zhang X; Zhao X
    Bioresour Technol; 2017 Aug; 238():616-623. PubMed ID: 28486194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature and composite alumina on pyrolysis of sewage sludge.
    Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y
    J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.
    Zhang H; Xiao R; Jin B; Xiao G; Chen R
    Bioresour Technol; 2013 Jul; 140():256-62. PubMed ID: 23707913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.
    Aysu T; Sanna A
    Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.