These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30374768)

  • 1. Exploring nanoscale structure change of dermal tissues suffering injury by small angle X-ray scattering and transmission electron microscopy.
    Jiang Y; Tian F; Wang Z; Niu Y; Yang J; Song F; Jin S; Cao Y; Dong J; Lu S
    Mol Biol Rep; 2019 Feb; 46(1):67-76. PubMed ID: 30374768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the collagen nanostructure of dermal tissues after injury.
    Tian F; Niu Y; Jiang Y
    Burns; 2019 Dec; 45(8):1759-1764. PubMed ID: 31431312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional insights into dermal tissue as a cue for cellular behavior.
    Jiang Y; Lu S
    Burns; 2014 Mar; 40(2):191-9. PubMed ID: 24176756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers.
    Dunkin CSJ; Pleat JM; Gillespie PH; Tyler MPH; Roberts AHN; McGrouther DA
    Plast Reconstr Surg; 2007 May; 119(6):1722-1732. PubMed ID: 17440346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal analysis of rat dermal tissue in the different injury states.
    Xu H; Zhang J; Jiang Y; Lu S; Niu Y; Dong J; Jin S; Song F; Cao X; Qing C; Tian M; Liu Y
    Int Wound J; 2022 Aug; 19(5):1016-1022. PubMed ID: 34617391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the dermal "template effect" and its structure.
    Jiang Y; Lu S
    Mol Biol Rep; 2013 Aug; 40(8):4837-41. PubMed ID: 23657596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can fractal dimension analysis be used in quantitating collagen structure?
    Tian F; Jiang Y; Liu Y; Lu S; Yang J; Cao Y
    Exp Dermatol; 2021 Dec; 30(12):1825-1828. PubMed ID: 34161636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of Dermis: Scarring and Cells Involved.
    Rippa AL; Kalabusheva EP; Vorotelyak EA
    Cells; 2019 Jun; 8(6):. PubMed ID: 31216669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exploring the three-dimensional structure of dermal tissues of normal skin and scar in rat with synchrotron radiation X-ray imaging technology].
    Jiang YZ; Tong YJ; Xiao TQ; Xie HL; Qing C; DU GH; Lu SL
    Zhonghua Shao Shang Za Zhi; 2012 Feb; 28(1):5-8. PubMed ID: 22490532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the mechanism of scar formation: epidermis template defect theory].
    Lu SL; Qin C; Liu YK; Wang XQ; Xiang J; Mao ZG; Zhang FS; Jin SW; Dong JY; Hua LN
    Zhonghua Shao Shang Za Zhi; 2007 Feb; 23(1):6-12. PubMed ID: 17605245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermal templates and the wound-healing paradigm: the promise of tissue regeneration.
    Simpson DG
    Expert Rev Med Devices; 2006 Jul; 3(4):471-84. PubMed ID: 16866644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition.
    Beanes SR; Hu FY; Soo C; Dang CM; Urata M; Ting K; Atkinson JB; Benhaim P; Hedrick MH; Lorenz HP
    Plast Reconstr Surg; 2002 Jan; 109(1):160-70. PubMed ID: 11786808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin wound healing in different aged Xenopus laevis.
    Bertolotti E; Malagoli D; Franchini A
    J Morphol; 2013 Aug; 274(8):956-64. PubMed ID: 23640793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of human skin in subepidermal wound healing process.
    Sugata K; Kitahara T; Takema Y
    Skin Res Technol; 2008 Nov; 14(4):436-9. PubMed ID: 18937778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation.
    Lamme EN; Van Leeuwen RT; Brandsma K; Van Marle J; Middelkoop E
    J Pathol; 2000 Apr; 190(5):595-603. PubMed ID: 10727986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction.
    Tetyczka C; Hodzic A; Kriechbaum M; Juraić K; Spirk C; Hartl S; Pritz E; Leitinger G; Roblegg E
    Eur J Pharm Biopharm; 2019 Jun; 139():153-160. PubMed ID: 30905779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-contrast microtomography with synchrotron radiation technology: a new noninvasive technique to analyze the three-dimensional structure of dermal tissues.
    Jiang Y; Tong Y; Xiao T; Lu S
    Dermatology; 2012; 225(1):75-80. PubMed ID: 22907159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering.
    Korpanty J; Parent LR; Hampu N; Weigand S; Gianneschi NC
    Nat Commun; 2021 Nov; 12(1):6568. PubMed ID: 34772926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of electron-microscopy maps using solution small-angle X-ray scattering.
    Lytje K; Pedersen JS
    Acta Crystallogr D Struct Biol; 2024 Jul; 80(Pt 7):493-505. PubMed ID: 38935344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.