These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30374862)

  • 1. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
    Senapati S; Park PS
    Methods Mol Biol; 2019; 1886():61-74. PubMed ID: 30374862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
    Senapati S; Park PS
    Chem Rec; 2023 Oct; 23(10):e202300113. PubMed ID: 37265335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes.
    Bosshart PD; Engel A; Fotiadis D
    Methods Mol Biol; 2015; 1271():189-203. PubMed ID: 25697525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes.
    Senapati S; Poma AB; Cieplak M; Filipek S; Park PSH
    Anal Chem; 2019 Jun; 91(11):7226-7235. PubMed ID: 31074606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes.
    Senapati S; Gragg M; Samuels IS; Parmar VM; Maeda A; Park PS
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1403-1413. PubMed ID: 29626443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods.
    Maity S; Ilieva N; Laio A; Torre V; Mazzolini M
    Sci Rep; 2017 Sep; 7(1):12000. PubMed ID: 28931892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
    Rakshit T; Senapati S; Parmar VM; Sahu B; Maeda A; Park PS
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1691-1702. PubMed ID: 28645515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
    Park PS
    Pflugers Arch; 2021 Sep; 473(9):1361-1376. PubMed ID: 33591421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The G protein-coupled receptor rhodopsin in the native membrane.
    Fotiadis D; Liang Y; Filipek S; Saperstein DA; Engel A; Palczewski K
    FEBS Lett; 2004 Apr; 564(3):281-288. PubMed ID: 15111110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes.
    Liang Y; Fotiadis D; Filipek S; Saperstein DA; Palczewski K; Engel A
    J Biol Chem; 2003 Jun; 278(24):21655-21662. PubMed ID: 12663652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes.
    Suda K; Filipek S; Palczewski K; Engel A; Fotiadis D
    Mol Membr Biol; 2004; 21(6):435-46. PubMed ID: 15764373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes.
    Rakshit T; Park PS
    Biochemistry; 2015 May; 54(18):2885-94. PubMed ID: 25881629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane.
    Feldman TB; Ivankov OI; Kuklin AI; Murugova TN; Yakovleva MA; Smitienko OA; Kolchugina IB; Round A; Gordeliy VI; Belushkin AV; Ostrovsky MA
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):183000. PubMed ID: 31152688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin Oligomerization and Aggregation.
    Park PS
    J Membr Biol; 2019 Oct; 252(4-5):413-423. PubMed ID: 31286171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice.
    Liang Y; Fotiadis D; Maeda T; Maeda A; Modzelewska A; Filipek S; Saperstein DA; Engel A; Palczewski K
    J Biol Chem; 2004 Nov; 279(46):48189-96. PubMed ID: 15337746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.