These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30374862)

  • 21. Atomic-force microscopy: Rhodopsin dimers in native disc membranes.
    Fotiadis D; Liang Y; Filipek S; Saperstein DA; Engel A; Palczewski K
    Nature; 2003 Jan; 421(6919):127-8. PubMed ID: 12520290
    [No Abstract]   [Full Text] [Related]  

  • 22. Reconstitution of squid and cattle rhodopsin by the use of metaretinochrome in their respective membranes.
    Seki T; Hara R; Hara T
    Exp Eye Res; 1982 Apr; 34(4):609-21. PubMed ID: 6210566
    [No Abstract]   [Full Text] [Related]  

  • 23. Rhodopsin mobility, structure, and lipid-protein interaction in squid photoreceptor membranes.
    Ryba NJ; Hoon MA; Findlay JB; Saibil HR; Wilkinson JR; Heimburg T; Marsh D
    Biochemistry; 1993 Apr; 32(13):3298-305. PubMed ID: 8384876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light damaging action of all-trans-retinal and its derivatives on rhodopsin molecules in the photoreceptor membrane.
    Loginova MY; Rostovtseva YV; Feldman TB; Ostrovsky MA
    Biochemistry (Mosc); 2008 Feb; 73(2):130-8. PubMed ID: 18298368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and conformation of rhodopsin in the disc membrane.
    Akhtar M
    Biochem Soc Trans; 1983 Dec; 11(6):668-72. PubMed ID: 6667775
    [No Abstract]   [Full Text] [Related]  

  • 26. Studying the rhodopsin-like G protein-coupled receptors by atomic force microscopy.
    Fang B; Zhao L; Du X; Liu Q; Yang H; Li F; Sheng Y; Zhao W; Zhong H
    Cytoskeleton (Hoboken); 2021 Aug; 78(8):400-416. PubMed ID: 35066996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding and activation of rod outer segment phosphodiesterase and guanosine triphosphate binding protein by disc membranes: influence of reassociation method and divalent cations.
    Miller JL; Litman BJ; Dratz EA
    Biochim Biophys Acta; 1987 Mar; 898(1):81-9. PubMed ID: 3030422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of carbohydrates on the binding of rod outer-segment (ROS) disc membranes and intact ROS by the cells of the retinal pigment epithelium of the embryonic chick.
    Lentrichia BB; Itoh Y; Plantner JJ; Kean EL
    Exp Eye Res; 1987 Jan; 44(1):127-42. PubMed ID: 3556448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.
    Albert AD; Watts A; Spooner P; Groebner G; Young J; Yeagle PL
    Biochim Biophys Acta; 1997 Aug; 1328(1):74-82. PubMed ID: 9298947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR
    Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes.
    Khan SM; Bolen W; Hargrave PA; Santoro MM; McDowell JH
    Eur J Biochem; 1991 Aug; 200(1):53-9. PubMed ID: 1831759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AFM: a nanotool in membrane biology.
    Muller DJ
    Biochemistry; 2008 Aug; 47(31):7986-98. PubMed ID: 18616288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane protein diffusion sets the speed of rod phototransduction.
    Calvert PD; Govardovskii VI; Krasnoperova N; Anderson RE; Lem J; Makino CL
    Nature; 2001 May; 411(6833):90-4. PubMed ID: 11333983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-speed atomic force microscopy: Structure and dynamics of single proteins.
    Casuso I; Rico F; Scheuring S
    Curr Opin Chem Biol; 2011 Oct; 15(5):704-9. PubMed ID: 21632275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors.
    Fotiadis D; Jastrzebska B; Philippsen A; Müller DJ; Palczewski K; Engel A
    Curr Opin Struct Biol; 2006 Apr; 16(2):252-9. PubMed ID: 16567090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.