These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30374862)

  • 41. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.
    Thomas DD; Stryer L
    J Mol Biol; 1982 Jan; 154(1):145-57. PubMed ID: 7077659
    [No Abstract]   [Full Text] [Related]  

  • 42. Depalmitoylation of rhodopsin with hydroxylamine.
    Pepperberg DR; Morrison DF; O'Brien PJ
    Methods Enzymol; 1995; 250():348-61. PubMed ID: 7651164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. G protein-coupled receptor rhodopsin.
    Palczewski K
    Annu Rev Biochem; 2006; 75():743-67. PubMed ID: 16756510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visualization of single proteins from stripped native cell membranes: a protocol for high-resolution atomic force microscopy.
    Marasini C; Jacchetti E; Moretti M; Canale C; Moran O; Vassalli M
    Microsc Res Tech; 2013 Jul; 76(7):723-32. PubMed ID: 23681761
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transglutaminase modification of rhodopsin in retinal rod outer segment disk membranes.
    McDowell JH; Ubel A; Brown RA; Hargrave PA
    Arch Biochem Biophys; 1986 Sep; 249(2):506-14. PubMed ID: 2875689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential rhodopsin regeneration in photoreceptor membranes is correlated with variations in membrane properties.
    Boesze-Battaglia K; Allen C
    Biosci Rep; 1998 Feb; 18(1):29-38. PubMed ID: 9653516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relative orientation between the beta-ionone ring and the polyene chain for the chromophore of rhodopsin in native membranes.
    Spooner PJ; Sharples JM; Verhoeven MA; Lugtenburg J; Glaubitz C; Watts A
    Biochemistry; 2002 Jun; 41(24):7549-55. PubMed ID: 12056885
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and analysis of two-dimensional crystals of rhodopsin.
    Schertler GF; Hargrave PA
    Methods Enzymol; 2000; 315():91-107. PubMed ID: 10736696
    [No Abstract]   [Full Text] [Related]  

  • 50. Temperature dependence of G-protein activation in photoreceptor membranes. Transient extra metarhodopsin II on bovine disk membranes.
    Kohl B; Hofmann KP
    Biophys J; 1987 Aug; 52(2):271-7. PubMed ID: 3117126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Interaction of guanine nucleotides with photoreceptor membranes of rod outer segments of frog retina].
    Tishchenkov VG; Orlov Nia
    Biofizika; 1983; 28(2):274-9. PubMed ID: 6601965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox.
    Laskowski PR; Pfreundschuh M; Stauffer M; Ucurum Z; Fotiadis D; Müller DJ
    ACS Nano; 2017 Aug; 11(8):8292-8301. PubMed ID: 28745869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Observing Xenopus laevis oocyte plasma membrane by Atomic Force Microscopy.
    Orsini F; Santacroce M; Arosio P; Sacchi VF
    Methods; 2010 May; 51(1):106-13. PubMed ID: 19995606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cholesterol in the rod outer segment: A complex role in a "simple" system.
    Albert A; Alexander D; Boesze-Battaglia K
    Chem Phys Lipids; 2016 Sep; 199():94-105. PubMed ID: 27216754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atomic force microscopy of biological membranes.
    Frederix PL; Bosshart PD; Engel A
    Biophys J; 2009 Jan; 96(2):329-38. PubMed ID: 19167286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilization of native membrane-bound rhodopsin on biosensor surfaces.
    Minic J; Grosclaude J; Aioun J; Persuy MA; Gorojankina T; Salesse R; Pajot-Augy E; Hou Y; Helali S; Jaffrezic-Renault N; Bessueille F; Errachid A; Gomila G; Ruiz O; Samitier J
    Biochim Biophys Acta; 2005 Aug; 1724(3):324-32. PubMed ID: 15927400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy.
    Li M; Xiao X; Liu L; Xi N; Wang Y
    J Immunol Methods; 2016 Sep; 436():41-9. PubMed ID: 27374866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin.
    Gorodovikova EN; Senin II; Philippov PP
    FEBS Lett; 1994 Oct; 353(2):171-2. PubMed ID: 7926045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.