These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 30374867)

  • 21. Biological physics by high-speed atomic force microscopy.
    Casuso I; Redondo-Morata L; Rico F
    Philos Trans A Math Phys Eng Sci; 2020 Dec; 378(2186):20190604. PubMed ID: 33100165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and localization of single molecular recognition events using atomic force microscopy.
    Hinterdorfer P; Dufrêne YF
    Nat Methods; 2006 May; 3(5):347-55. PubMed ID: 16628204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Introduction to Magnetic Tweezers.
    Dulin D
    Methods Mol Biol; 2024; 2694():375-401. PubMed ID: 37824014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing ligand-receptor bonds in physiologically relevant conditions using AFM.
    Lo Giudice C; Dumitru AC; Alsteens D
    Anal Bioanal Chem; 2019 Oct; 411(25):6549-6559. PubMed ID: 31410537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic effects in fast AFM single-molecule force measurements.
    Janovjak H; Struckmeier J; Müller DJ
    Eur Biophys J; 2005 Feb; 34(1):91-6. PubMed ID: 15257425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics.
    Verdorfer T; Bernardi RC; Meinhold A; Ott W; Luthey-Schulten Z; Nash MA; Gaub HE
    J Am Chem Soc; 2017 Dec; 139(49):17841-17852. PubMed ID: 29058444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N; Thoma J
    Methods Mol Biol; 2020; 2127():359-372. PubMed ID: 32112333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics.
    Booth JJ; Shalashilin DV
    J Phys Chem B; 2016 Feb; 120(4):700-8. PubMed ID: 26760898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the free energy of adsorption of a polypeptide on amorphous SiO2 from molecular dynamics simulations and force spectroscopy experiments.
    Meißner RH; Wei G; Ciacchi LC
    Soft Matter; 2015 Aug; 11(31):6254-65. PubMed ID: 26158561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function.
    Löf A; Müller JP; Benoit M; Brehm MA
    Adv Biol Regul; 2017 Jan; 63():81-91. PubMed ID: 27717713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of atomic force microscopy for characteristics of single intermolecular interactions.
    Safenkova IV; Zherdev AV; Dzantievf BB
    Biochemistry (Mosc); 2012 Dec; 77(13):1536-52. PubMed ID: 23379527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches.
    Stirnemann G
    Chem Commun (Camb); 2022 Jun; 58(51):7110-7119. PubMed ID: 35678696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples.
    Bondia P; Casado S; Flors C
    Methods Mol Biol; 2017; 1663():105-113. PubMed ID: 28924662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomistic Molecular Dynamics Simulations of DNA in Complex 3D Arrangements for Comparison with Lower Resolution Structural Experiments.
    Watson G; Velasco-Berrelleza V; Noy A
    Methods Mol Biol; 2022; 2476():95-109. PubMed ID: 35635699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
    Lee CK; Wang YM; Huang LS; Lin S
    Micron; 2007; 38(5):446-61. PubMed ID: 17015017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force-clamp measurements of receptor-ligand interactions.
    Rico F; Chu C; Moy VT
    Methods Mol Biol; 2011; 736():331-53. PubMed ID: 21660736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic force microscopy for single molecule characterisation of protein aggregation.
    Ruggeri FS; Šneideris T; Vendruscolo M; Knowles TPJ
    Arch Biochem Biophys; 2019 Mar; 664():134-148. PubMed ID: 30742801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.
    Owen RJ; Heyes CD; Knebel D; Röcker C; Nienhaus GU
    Biopolymers; 2006 Jul; 82(4):410-4. PubMed ID: 16302196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single molecule studies of force-induced S2 site exposure in the mammalian Notch negative regulatory domain.
    Ploscariu N; Kuczera K; Malek KE; Wawrzyniuk M; Dey A; Szoszkiewicz R
    J Phys Chem B; 2014 May; 118(18):4761-70. PubMed ID: 24735465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AFM-Based Single-Molecule Force Spectroscopy of Proteins.
    Scholl ZN; Marszalek PE
    Methods Mol Biol; 2018; 1814():35-47. PubMed ID: 29956225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.