These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30375)
1. Transport and accumulation of calcium in mitochondria. Lehninger AL; Reynafarje B; Vercesi A; Tew WP Ann N Y Acad Sci; 1978 Apr; 307():160-76. PubMed ID: 30375 [No Abstract] [Full Text] [Related]
2. Use of the coulombic interactions of the lanthanide series to identify two classes of Ca2+ binding sites in mitochondria. Tew WP Biochem Biophys Res Commun; 1977 Sep; 78(2):624-30. PubMed ID: 907701 [No Abstract] [Full Text] [Related]
3. Mitochondria and calcium ion transport. Lehninger AL Biochem J; 1970 Sep; 119(2):129-38. PubMed ID: 4922961 [No Abstract] [Full Text] [Related]
4. The regulation of intracellular calcium by mitochondria. Carafoli E; Crompton M Ann N Y Acad Sci; 1978 Apr; 307():269-84. PubMed ID: 30378 [No Abstract] [Full Text] [Related]
5. The response of reduced pyridine nucleotide to calcium-induced alkalinity. Chance B; Azzi A Ann N Y Acad Sci; 1969 Oct; 147(19):805-11. PubMed ID: 4311649 [No Abstract] [Full Text] [Related]
6. Special characteristics of brain mitochondrial calcium accumulation. Mela L; Wrobel-Kuhl K Ann N Y Acad Sci; 1978 Apr; 307():242-5. PubMed ID: 280268 [No Abstract] [Full Text] [Related]
7. Proton translocation reactions in the respiratory chains. Papa S Biochim Biophys Acta; 1976 Apr; 456(1):39-84. PubMed ID: 178381 [No Abstract] [Full Text] [Related]
8. Metabolism of calcium and effect of divalent cations on respiratory activity of yeast mitochondria. Subík J; Kolarov J Folia Microbiol (Praha); 1970; 15(6):448-58. PubMed ID: 4325080 [No Abstract] [Full Text] [Related]
9. Inhibition of anion transport across with mitochondrial membrane by amytal. Swierczyński J; Aleksandrowicz Z Biochim Biophys Acta; 1974 Nov; 373(1):66-75. PubMed ID: 4429730 [No Abstract] [Full Text] [Related]
10. Bioenergetics and the problem of tumor growth. Racker E Am Sci; 1972; 60(1):56-63. PubMed ID: 4332766 [No Abstract] [Full Text] [Related]
11. The tricarboxylate carrier of the mitochondrial membrane: solubilization and partial purification of citrate-binding protein from submitochondrial particles. Palmieri F; Genchi G; Stipani I; Riccio P; Quagliariello E Biochem Soc Trans; 1977; 5(2):527-31. PubMed ID: 902872 [No Abstract] [Full Text] [Related]
12. Thermodynamics of electron transfer and its coupling to vectorial processes in biological membranes. Arata H; Nishimura M Biophys J; 1980 Nov; 32(2):791-806. PubMed ID: 7260302 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic relationships in mitochondrial oxidative phosphorylation. Wilson DF; Erecińska M; Dutton PL Annu Rev Biophys Bioeng; 1974; 3(0):203-30. PubMed ID: 4153883 [No Abstract] [Full Text] [Related]
14. Determination of the H+/site and Ca2+/site ratios of mitochondrial electron transport. Reynafarje B; Brand MD; Alexandre A; Lehninger AL Methods Enzymol; 1979; 55():640-56. PubMed ID: 37405 [No Abstract] [Full Text] [Related]
15. Penetration of the mitochondrial membrane by tricarboxylic acid anions. Chappell JB; Robinson BH Biochem Soc Symp; 1968; 27():123-33. PubMed ID: 4319083 [No Abstract] [Full Text] [Related]
16. The electromechanochemical model for energy coupling in mitochondria. Green DE Biochim Biophys Acta; 1974 Apr; 346(1):27-78. PubMed ID: 4151654 [No Abstract] [Full Text] [Related]
17. Carrier mediated GABA translocation into rat brain mitochondria. Passarella S; Atlante A; Barile M; Quagliariello E Biochem Biophys Res Commun; 1984 Jun; 121(3):770-8. PubMed ID: 6743319 [TBL] [Abstract][Full Text] [Related]
18. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571 [No Abstract] [Full Text] [Related]