These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30375074)
1. Histone acetylation increases in response to ferulic, gallic, and sinapic acids acting synergistically in vitro to inhibit Candida albicans yeast-to-hyphae transition. Câmara CRS; Shi Q; Pedersen M; Zbasnik R; Nickerson KW; Schlegel V Phytother Res; 2019 Feb; 33(2):319-326. PubMed ID: 30375074 [TBL] [Abstract][Full Text] [Related]
2. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Messier C; Grenier D Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543 [TBL] [Abstract][Full Text] [Related]
3. Antifungal activity and influence of propolis against germ tube formation as a critical virulence attribute by clinical isolates of Candida albicans. Haghdoost NS; Salehi TZ; Khosravi A; Sharifzadeh A J Mycol Med; 2016 Dec; 26(4):298-305. PubMed ID: 27789229 [TBL] [Abstract][Full Text] [Related]
4. Histone acetylation/deacetylation in Su S; Li X; Yang X; Li Y; Chen X; Sun S; Jia S Future Microbiol; 2020 Jul; 15():1075-1090. PubMed ID: 32854542 [TBL] [Abstract][Full Text] [Related]
5. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast. Pointer BR; Schmidt M FEMS Microbiol Lett; 2016 Jul; 363(13):. PubMed ID: 27190149 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Messier C; Epifano F; Genovese S; Grenier D Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Manoharan RK; Lee JH; Kim YG; Kim SI; Lee J Biofouling; 2017 Feb; 33(2):143-155. PubMed ID: 28155334 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers. Lee JH; Kim YG; Lee J Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256 [TBL] [Abstract][Full Text] [Related]
9. Betamethasone augments the antifungal effect of menadione--towards a novel anti-Candida albicans combination therapy. Jakab Á; Emri T; Sipos L; Kiss Á; Kovács R; Dombrádi V; Kemény-Beke Á; Balla J; Majoros L; Pócsi I J Basic Microbiol; 2015 Aug; 55(8):973-81. PubMed ID: 25707543 [TBL] [Abstract][Full Text] [Related]
10. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Wurtele H; Tsao S; Lépine G; Mullick A; Tremblay J; Drogaris P; Lee EH; Thibault P; Verreault A; Raymond M Nat Med; 2010 Jul; 16(7):774-80. PubMed ID: 20601951 [TBL] [Abstract][Full Text] [Related]
11. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. Sun L; Liao K; Wang D PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475 [TBL] [Abstract][Full Text] [Related]
12. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. Yang LF; Liu X; Lv LL; Ma ZM; Feng XC; Ma TH J Mycol Med; 2018 Mar; 28(1):36-44. PubMed ID: 29477784 [TBL] [Abstract][Full Text] [Related]
13. Novel properties of Hippophae rhamnoides L. twig and leaf extracts - anti-virulence action and synergy with antifungals studied in vitro on Candida spp. model. Sadowska B; Budzyńska A; Stochmal A; Żuchowski J; Różalska B Microb Pathog; 2017 Jun; 107():372-379. PubMed ID: 28428132 [TBL] [Abstract][Full Text] [Related]
14. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Raut JS; Shinde RB; Chauhan NM; Karuppayil SM Biofouling; 2013; 29(1):87-96. PubMed ID: 23216018 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Haque F; Alfatah M; Ganesan K; Bhattacharyya MS Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404 [TBL] [Abstract][Full Text] [Related]
16. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. Vediyappan G; Dumontet V; Pelissier F; d'Enfert C PLoS One; 2013; 8(9):e74189. PubMed ID: 24040201 [TBL] [Abstract][Full Text] [Related]
17. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment]. Zhang MX; Xia D; Shi GX; Shao J; Wang TM; Tang CC; Wang CZ Zhongguo Zhong Yao Za Zhi; 2015 Feb; 40(4):710-5. PubMed ID: 26137695 [TBL] [Abstract][Full Text] [Related]
18. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos. Janeczko M; Kubiński K; Martyna A; Muzyczka A; Boguszewska-Czubara A; Czernik S; Tokarska-Rodak M; Chwedczuk M; Demchuk OM; Golczyk H; Masłyk M J Med Microbiol; 2018 Apr; 67(4):598-609. PubMed ID: 29461185 [TBL] [Abstract][Full Text] [Related]
19. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. Heintz-Buschart A; Eickhoff H; Hohn E; Bilitewski U J Biotechnol; 2013 Mar; 164(1):137-42. PubMed ID: 23262131 [TBL] [Abstract][Full Text] [Related]
20. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Chang P; Fan X; Chen J Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]