These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators. Padi M; Quackenbush J BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632 [TBL] [Abstract][Full Text] [Related]
24. Networking genetic regulation and neural computation: directed network topology and its effect on the dynamics. Grönlund A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061908. PubMed ID: 15697403 [TBL] [Abstract][Full Text] [Related]
25. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. Borklu Yucel E; Ulgen KO Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632 [TBL] [Abstract][Full Text] [Related]
26. Extrinsic noise passing through a Michaelis-Menten reaction: a universal response of a genetic switch. Ochab-Marcinek A J Theor Biol; 2010 Apr; 263(4):510-20. PubMed ID: 20045705 [TBL] [Abstract][Full Text] [Related]
27. From uncertain protein interaction networks to signaling pathways through intensive color coding. Gabr H; Dobra A; Kahveci T Pac Symp Biocomput; 2013; ():111-22. PubMed ID: 23424117 [TBL] [Abstract][Full Text] [Related]
28. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae. Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658 [TBL] [Abstract][Full Text] [Related]
29. Zooming in on yeast osmoadaptation. Kühn C; Klipp E Adv Exp Med Biol; 2012; 736():293-310. PubMed ID: 22161336 [TBL] [Abstract][Full Text] [Related]
30. Dynamic and structural constraints in signal propagation by regulatory networks. Estrada J; Guantes R Mol Biosyst; 2013 Feb; 9(2):268-84. PubMed ID: 23224050 [TBL] [Abstract][Full Text] [Related]
31. Quantitative inference of dynamic regulatory pathways via microarray data. Chang WC; Li CW; Chen BS BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298 [TBL] [Abstract][Full Text] [Related]
32. Influence of degree correlations on network structure and stability in protein-protein interaction networks. Friedel CC; Zimmer R BMC Bioinformatics; 2007 Aug; 8():297. PubMed ID: 17688687 [TBL] [Abstract][Full Text] [Related]
33. In search of the biological significance of modular structures in protein networks. Wang Z; Zhang J PLoS Comput Biol; 2007 Jun; 3(6):e107. PubMed ID: 17542644 [TBL] [Abstract][Full Text] [Related]
34. Efficient algorithms for detecting signaling pathways in protein interaction networks. Scott J; Ideker T; Karp RM; Sharan R J Comput Biol; 2006 Mar; 13(2):133-44. PubMed ID: 16597231 [TBL] [Abstract][Full Text] [Related]
35. Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution. Hormozdiari F; Berenbrink P; Przulj N; Sahinalp SC PLoS Comput Biol; 2007 Jul; 3(7):e118. PubMed ID: 17616981 [TBL] [Abstract][Full Text] [Related]
36. Characterizing the topology of probabilistic biological networks. Todor A; Dobra A; Kahveci T IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):970-83. PubMed ID: 24334390 [TBL] [Abstract][Full Text] [Related]