BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30375387)

  • 1. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation.
    Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X
    Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries.
    Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X
    Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li
    Peng J; Zheng X; Wu Y; Li C; Lv Z; Zheng C; Liu J; Zhong H; Gong Z; Yang Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20191-20199. PubMed ID: 37058532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.
    Chung SH; Manthiram A
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition.
    Chung SH; Manthiram A
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realizing an Applicable "Solid → Solid" Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium-Sulfur Batteries.
    Chen X; Yuan L; Li Z; Chen S; Ji H; Qin Y; Wu L; Shen Y; Wang L; Hu J; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29830-29837. PubMed ID: 31361114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators.
    Gao X; Zheng X; Tsao Y; Zhang P; Xiao X; Ye Y; Li J; Yang Y; Xu R; Bao Z; Cui Y
    J Am Chem Soc; 2021 Nov; 143(43):18188-18195. PubMed ID: 34677957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Sulfide-Carbon Composites via Aerosol Spray Pyrolysis as Cathode Materials for Lithium-Sulfur Batteries.
    Hart N; Shi J; Zhang J; Fu C; Guo J
    Front Chem; 2018; 6():476. PubMed ID: 30356846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction.
    Kulisch J; Sommer H; Brezesinski T; Janek J
    Phys Chem Chem Phys; 2014 Sep; 16(35):18765-71. PubMed ID: 25077958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries.
    Pai R; Singh A; Tang MH; Kalra V
    Commun Chem; 2022 Feb; 5(1):17. PubMed ID: 36697747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.
    Zhong Y; Yin L; He P; Liu W; Wu Z; Wang H
    J Am Chem Soc; 2018 Jan; 140(4):1455-1459. PubMed ID: 29309139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries.
    Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX
    Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries.
    Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram.
    Dibden JW; Smith JW; Zhou N; Garcia-Araez N; Owen JR
    Chem Commun (Camb); 2016 Oct; 52(87):12885-12888. PubMed ID: 27738668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries.
    Pei F; Lin L; Ou D; Zheng Z; Mo S; Fang X; Zheng N
    Nat Commun; 2017 Sep; 8(1):482. PubMed ID: 28883525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.