BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30375843)

  • 1. Precise Small Molecule Degradation of a Noncoding RNA Identifies Cellular Binding Sites and Modulates an Oncogenic Phenotype.
    Li Y; Disney MD
    ACS Chem Biol; 2018 Nov; 13(11):3065-3071. PubMed ID: 30375843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a small molecule against an oncogenic noncoding RNA.
    Velagapudi SP; Cameron MD; Haga CL; Rosenberg LH; Lafitte M; Duckett DR; Phinney DG; Disney MD
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5898-903. PubMed ID: 27170187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bleomycin Can Cleave an Oncogenic Noncoding RNA.
    Angelbello AJ; Disney MD
    Chembiochem; 2018 Jan; 19(1):43-47. PubMed ID: 29084369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.
    Disney MD; Angelbello AJ
    Acc Chem Res; 2016 Dec; 49(12):2698-2704. PubMed ID: 27993012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Degradation of the Oncogenic MicroRNA 17-92 Cluster by Structure-Targeting Ligands.
    Liu X; Haniff HS; Childs-Disney JL; Shuster A; Aikawa H; Adibekian A; Disney MD
    J Am Chem Soc; 2020 Apr; 142(15):6970-6982. PubMed ID: 32233464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin.
    Costales MG; Hoch DG; Abegg D; Childs-Disney JL; Velagapudi SP; Adibekian A; Disney MD
    J Am Chem Soc; 2019 Feb; 141(7):2960-2974. PubMed ID: 30726072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit.
    Costales MG; Haga CL; Velagapudi SP; Childs-Disney JL; Phinney DG; Disney MD
    J Am Chem Soc; 2017 Mar; 139(9):3446-3455. PubMed ID: 28240549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small Molecule Targeted Recruitment of a Nuclease to RNA.
    Costales MG; Matsumoto Y; Velagapudi SP; Disney MD
    J Am Chem Soc; 2018 Jun; 140(22):6741-6744. PubMed ID: 29792692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p.
    Li S; Zhou J; Wang Z; Wang P; Gao X; Wang Y
    Biomed Pharmacother; 2018 Aug; 104():451-457. PubMed ID: 29793177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Targeted Cleavage of a r(CUG) Repeat Expansion in Cells by Using a Small-Molecule-Deglycobleomycin Conjugate.
    Angelbello AJ; DeFeo ME; Glinkerman CM; Boger DL; Disney MD
    ACS Chem Biol; 2020 Apr; 15(4):849-855. PubMed ID: 32186845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer.
    Rhodes LV; Martin EC; Segar HC; Miller DF; Buechlein A; Rusch DB; Nephew KP; Burow ME; Collins-Burow BM
    Oncotarget; 2015 Jun; 6(18):16638-52. PubMed ID: 26062653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment.
    Zhang P; Liu X; Abegg D; Tanaka T; Tong Y; Benhamou RI; Baisden J; Crynen G; Meyer SM; Cameron MD; Chatterjee AK; Adibekian A; Childs-Disney JL; Disney MD
    J Am Chem Soc; 2021 Aug; 143(33):13044-13055. PubMed ID: 34387474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA.
    Suresh BM; Li W; Zhang P; Wang KW; Yildirim I; Parker CG; Disney MD
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33197-33203. PubMed ID: 33318191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase synthesis of bleomycin A(5) and three monosaccharide analogues: exploring the role of the carbohydrate moiety in RNA cleavage.
    Thomas CJ; Chizhov AO; Leitheiser CJ; Rishel MJ; Konishi K; Tao ZF; Hecht SM
    J Am Chem Soc; 2002 Nov; 124(44):12926-7. PubMed ID: 12405801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity.
    Jin YY; Andrade J; Wickstrom E
    PLoS One; 2015; 10(12):e0142574. PubMed ID: 26629823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-based design of bioactive small molecules that target precursor microRNAs.
    Velagapudi SP; Gallo SM; Disney MD
    Nat Chem Biol; 2014 Apr; 10(4):291-7. PubMed ID: 24509821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the Cleaving Effector in Chimeric Molecules that Target RNA Enhances Cellular Selectivity.
    Suresh BM; Tong Y; Abegg D; Adibekian A; Childs-Disney JL; Disney MD
    ACS Chem Biol; 2023 Nov; 18(11):2385-2393. PubMed ID: 37824291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development.
    Jin C; Yan B; Lu Q; Lin Y; Ma L
    Tumour Biol; 2016 Jun; 37(6):7383-94. PubMed ID: 26676637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WBP2 Downregulation Inhibits Proliferation by Blocking YAP Transcription and the EGFR/PI3K/Akt Signaling Pathway in Triple Negative Breast Cancer.
    Song H; Wu T; Xie D; Li D; Hua K; Hu J; Fang L
    Cell Physiol Biochem; 2018; 48(5):1968-1982. PubMed ID: 30092563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-4319 Suppress the Malignancy of Triple-Negative Breast Cancer by Regulating Self-Renewal and Tumorigenesis of Stem Cells.
    Chu J; Li Y; Fan X; Ma J; Li J; Lu G; Zhang Y; Huang Y; Li W; Huang X; Fu Z; Yin Y; Yuan H
    Cell Physiol Biochem; 2018; 48(2):593-604. PubMed ID: 30021199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.