BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 30375844)

  • 1. Self-Powered Biosensors Using Various Light Sources in Daily Life Environments: Integration of p-n Heterojunction Photodetectors and Colorimetric Reactions for Biomolecule Detection.
    Kim K; Kim H; Jang H; Park J; Jung GY; Kim MG
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39487-39493. PubMed ID: 30375844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactant/polymer hybrid films on p-n junction photodetectors for self-powered, non-invasive glucose biosensors.
    Kim K; Kim H; Jo EJ; Jang H; Park J; Jung GY; Kim MG
    Biosens Bioelectron; 2021 Mar; 175():112855. PubMed ID: 33279347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.
    Zhou M; Dong S
    Acc Chem Res; 2011 Nov; 44(11):1232-43. PubMed ID: 21812435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Textile Supercapacitors for Self-Powered Enzyme-Free Smartsensors.
    Sun T; Shen L; Jiang Y; Ma J; Lv F; Ma H; Chen D; Zhu N
    ACS Appl Mater Interfaces; 2020 May; 12(19):21779-21787. PubMed ID: 32323969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Self-Powered Smart Sensors for Portable Nutrition Monitoring.
    Ma J; Shen L; Jiang Y; Ma H; Lv F; Liu J; Su Y; Zhu N
    Anal Chem; 2022 Feb; 94(4):2333-2340. PubMed ID: 35043635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Powered Biosensors for Monitoring Human Physiological Changes.
    Xue Z; Wu L; Yuan J; Xu G; Wu Y
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.
    Han W; He H; Zhang L; Dong C; Zeng H; Dai Y; Xing L; Zhang Y; Xue X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29526-29537. PubMed ID: 28782353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring.
    Zhao J; Lin Y; Wu J; Nyein HYY; Bariya M; Tai LC; Chao M; Ji W; Zhang G; Fan Z; Javey A
    ACS Sens; 2019 Jul; 4(7):1925-1933. PubMed ID: 31271034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in oral fluid.
    Jia Y; Sun H; Li X; Sun D; Hu T; Xiang N; Ni Z
    Biomed Microdevices; 2018 Oct; 20(4):89. PubMed ID: 30315369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Powered Wearable Biosensor in a Baby Diaper for Monitoring Neonatal Jaundice through a Hydrovoltaic-Biosensing Coupling Effect of ZnO Nanoarray.
    Ning Z; Long Z; Yang G; Xing L; Xue X
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive and Wearable In
    Liu Q; Liu Y; Wu F; Cao X; Li Z; Alharbi M; Abbas AN; Amer MR; Zhou C
    ACS Nano; 2018 Feb; 12(2):1170-1178. PubMed ID: 29338249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.
    Shen YC; Yang CH; Chen SW; Wu SH; Yang TL; Huang JJ
    Biosens Bioelectron; 2014 Apr; 54():306-10. PubMed ID: 24291267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of low glucose levels in sweat with colorimetric wearable biosensors.
    Vaquer A; Barón E; de la Rica R
    Analyst; 2021 May; 146(10):3273-3279. PubMed ID: 33999074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat.
    Bandodkar AJ; Gutruf P; Choi J; Lee K; Sekine Y; Reeder JT; Jeang WJ; Aranyosi AJ; Lee SP; Model JB; Ghaffari R; Su CJ; Leshock JP; Ray T; Verrillo A; Thomas K; Krishnamurthi V; Han S; Kim J; Krishnan S; Hang T; Rogers JA
    Sci Adv; 2019 Jan; 5(1):eaav3294. PubMed ID: 30746477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics.
    Mejía-Salazar JR; Rodrigues Cruz K; Materón Vásques EM; Novais de Oliveira O
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics.
    Wang B; Thukral A; Xie Z; Liu L; Zhang X; Huang W; Yu X; Yu C; Marks TJ; Facchetti A
    Nat Commun; 2020 May; 11(1):2405. PubMed ID: 32415064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers.
    Gu C; Bai L; Pu L; Gai P; Li F
    Biosens Bioelectron; 2021 Mar; 176():112907. PubMed ID: 33349536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test.
    Sailapu SK; Liébana S; Merino-Jimenez I; Esquivel JP; Sabaté N
    Biosens Bioelectron; 2024 Jan; 243():115708. PubMed ID: 37862757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue-graphene film for glucose sensing.
    Ma J; Du Y; Jiang Y; Shen L; Ma H; Lv F; Cui Z; Pan Y; Shi L; Zhu N
    Mikrochim Acta; 2022 Jan; 189(1):46. PubMed ID: 34985727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.