BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30375905)

  • 21. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?
    Biehl KJ; Kong FM; Dehdashti F; Jin JY; Mutic S; El Naqa I; Siegel BA; Bradley JD
    J Nucl Med; 2006 Nov; 47(11):1808-12. PubMed ID: 17079814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
    Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interobserver delineation variation in lung tumour stereotactic body radiotherapy.
    Persson GF; Nygaard DE; Hollensen C; Munck af Rosenschöld P; Mouritsen LS; Due AK; Berthelsen AK; Nyman J; Markova E; Roed AP; Roed H; Korreman S; Specht L
    Br J Radiol; 2012 Sep; 85(1017):e654-60. PubMed ID: 22919015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced inter-observer and intra-observer delineation variation in esophageal cancer radiotherapy by use of fiducial markers.
    Machiels M; Jin P; van Hooft JE; Gurney-Champion OJ; Jelvehgaran P; Geijsen ED; Jeene PM; Willemijn Kolff M; Oppedijk V; Rasch CRN; van Herk MB; Alderliesten T; Hulshof MCCM
    Acta Oncol; 2019 Jun; 58(6):943-950. PubMed ID: 30905243
    [No Abstract]   [Full Text] [Related]  

  • 25. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
    Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deformable image registration and interobserver variation in contour propagation for radiation therapy planning.
    Riegel AC; Antone JG; Zhang H; Jain P; Raince J; Rea A; Bergamo AM; Kapur A; Potters L
    J Appl Clin Med Phys; 2016 May; 17(3):347-357. PubMed ID: 27167289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-grade glioma radiation therapy target volumes and patterns of failure obtained from magnetic resonance imaging and 18F-FDOPA positron emission tomography delineations from multiple observers.
    Kosztyla R; Chan EK; Hsu F; Wilson D; Ma R; Cheung A; Zhang S; Moiseenko V; Benard F; Nichol A
    Int J Radiat Oncol Biol Phys; 2013 Dec; 87(5):1100-6. PubMed ID: 24161427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical target volume in postoperative radiotherapy for gastric cancer: identification of major difficulties and controversies.
    Socha J; Wołąkiewicz G; Wasilewska-Teśluk E; Janiga P; Kondraciuk T; Majewska A; Olearski K; Kępka L
    Clin Transl Oncol; 2016 May; 18(5):480-8. PubMed ID: 26311079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: Reducing the interobserver variability in multicentre clinical studies.
    Schimek-Jasch T; Troost EG; Rücker G; Prokic V; Avlar M; Duncker-Rohr V; Mix M; Doll C; Grosu AL; Nestle U
    Strahlenther Onkol; 2015 Jun; 191(6):525-33. PubMed ID: 25665799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reducing interobserver variation of boost-CTV delineation in breast conserving radiation therapy using a pre-operative CT and delineation guidelines.
    Boersma LJ; Janssen T; Elkhuizen PH; Poortmans P; van der Sangen M; Scholten AN; Hanbeukers B; Duppen JC; Hurkmans C; van Vliet C
    Radiother Oncol; 2012 May; 103(2):178-82. PubMed ID: 22265730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 18F-FDG PET definition of gross tumor volume for radiotherapy of lung cancer: is the tumor uptake value-based approach appropriate for lymph node delineation?
    Rodríguez N; Sanz X; Trampal C; Foro P; Reig A; Lacruz M; Membrive I; Lozano J; Quera J; Algara M
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(3):659-66. PubMed ID: 20133071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Considerable interobserver variation in delineation of pancreatic cancer on 3DCT and 4DCT: a multi-institutional study.
    Versteijne E; Gurney-Champion OJ; van der Horst A; Lens E; Kolff MW; Buijsen J; Ebrahimi G; Neelis KJ; Rasch CR; Stoker J; van Herk M; Bel A; van Tienhoven G
    Radiat Oncol; 2017 Mar; 12(1):58. PubMed ID: 28335780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different specialties.
    Wu DH; Mayr NA; Karatas Y; Karatas R; Adli M; Edwards SM; Wolff JD; Movahed A; Montebello JF; Yuh WT
    J Appl Clin Med Phys; 2005; 6(4):106-10. PubMed ID: 16421504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interobserver variability in gross tumor volume delineation for hepatocellular carcinoma : Results of Korean Radiation Oncology Group 1207 study.
    Kim YS; Kim JW; Yoon WS; Kang MK; Lee IJ; Kim TH; Kim JH; Lee HS; Park HC; Jang HS; Kay CS; Yoon SM; Kim MS; Seong J
    Strahlenther Onkol; 2016 Oct; 192(10):714-21. PubMed ID: 27538775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation of the heart in radiotherapy for breast cancer.
    Lorenzen EL; Ewertz M; Brink C
    Acta Oncol; 2014 Oct; 53(10):1366-72. PubMed ID: 25223330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.
    Kawata Y; Arimura H; Ikushima K; Jin Z; Morita K; Tokunaga C; Yabu-Uchi H; Shioyama Y; Sasaki T; Honda H; Sasaki M
    Phys Med; 2017 Oct; 42():141-149. PubMed ID: 29173908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition.
    Schreurs LM; Busz DM; Paardekooper GM; Beukema JC; Jager PL; Van der Jagt EJ; van Dam GM; Groen H; Plukker JT; Langendijk JA
    Dis Esophagus; 2010 Aug; 23(6):493-501. PubMed ID: 20113320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.
    Levegrün S; Pöttgen C; Jawad JA; Berkovic K; Hepp R; Stuschke M
    Int J Radiat Oncol Biol Phys; 2013 Feb; 85(2):561-9. PubMed ID: 22658219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.