BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30375919)

  • 1. Roles of CDKs in RNA polymerase II transcription of the HIV-1 genome.
    Rice AP
    Transcription; 2019 Apr; 10(2):111-117. PubMed ID: 30375919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.
    Nekhai S; Zhou M; Fernandez A; Lane WS; Lamb NJ; Brady J; Kumar A
    Biochem J; 2002 Jun; 364(Pt 3):649-57. PubMed ID: 12049628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies.
    Rice AP
    Curr Pharm Des; 2017; 23(28):4098-4102. PubMed ID: 28677507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter.
    Deng L; Ammosova T; Pumfery A; Kashanchi F; Nekhai S
    J Biol Chem; 2002 Sep; 277(37):33922-9. PubMed ID: 12114499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclin-dependent kinases as therapeutic targets for HIV-1 infection.
    Rice AP
    Expert Opin Ther Targets; 2016 Dec; 20(12):1453-1461. PubMed ID: 27797603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDK11 in TREX/THOC Regulates HIV mRNA 3' End Processing.
    Pak V; Eifler TT; Jäger S; Krogan NJ; Fujinaga K; Peterlin BM
    Cell Host Microbe; 2015 Nov; 18(5):560-70. PubMed ID: 26567509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained induction of NF-kappa B is required for efficient expression of latent human immunodeficiency virus type 1.
    Williams SA; Kwon H; Chen LF; Greene WC
    J Virol; 2007 Jun; 81(11):6043-56. PubMed ID: 17376917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome.
    Kapasi AJ; Spector DH
    J Virol; 2008 Jan; 82(1):394-407. PubMed ID: 17942543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE.
    Paparidis NF; Durvale MC; Canduri F
    Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription.
    Parada CA; Roeder RG
    EMBO J; 1999 Jul; 18(13):3688-701. PubMed ID: 10393184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages.
    Zhou Q; Chen D; Pierstorff E; Luo K
    EMBO J; 1998 Jul; 17(13):3681-91. PubMed ID: 9649438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
    Zhou M; Deng L; Kashanchi F; Brady JN; Shatkin AJ; Kumar A
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12666-71. PubMed ID: 14569024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal.
    Zheng Y; Schubert HL; Singh PK; Martins LJ; Engelman AN; D'Orso I; Hill CP; Planelles V
    mBio; 2021 Jun; 12(3):e0109821. PubMed ID: 34154414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.
    Bowman EA; Kelly WG
    Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II.
    Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP
    Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient induction of cyclin T1 during human macrophage differentiation regulates human immunodeficiency virus type 1 Tat transactivation function.
    Liou LY; Herrmann CH; Rice AP
    J Virol; 2002 Nov; 76(21):10579-87. PubMed ID: 12368300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation.
    Tellier M; Zaborowska J; Neve J; Nojima T; Hester S; Fournier M; Furger A; Murphy S
    EMBO Rep; 2022 Oct; 23(10):e54520. PubMed ID: 35980303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1).
    Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM
    J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat.
    Brès V; Gomes N; Pickle L; Jones KA
    Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.