These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30376105)

  • 1. Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics: An Introduction to the Symposium.
    Aiello BR; Gillis GB; Fox JL
    Integr Comp Biol; 2018 Nov; 58(5):827-831. PubMed ID: 30376105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics-inspired biology.
    Gravish N; Lauder GV
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29599417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanosensory Hairs and Hair-like Structures in the Animal Kingdom: Specializations and Shared Functions Serve to Inspire Technology Applications.
    Boublil BL; Diebold CA; Moss CF
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback control as a framework for understanding tradeoffs in biology.
    Cowan NJ; Ankarali MM; Dyhr JP; Madhav MS; Roth E; Sefati S; Sponberg S; Stamper SA; Fortune ES; Daniel TL
    Integr Comp Biol; 2014 Jul; 54(2):223-37. PubMed ID: 24893678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies.
    Ijspeert AJ; Daley MA
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37565347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuromechanics of animal locomotion: From biology to robotics and back.
    Ramdya P; Ijspeert AJ
    Sci Robot; 2023 May; 8(78):eadg0279. PubMed ID: 37256966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in locomotor dynamics reveals the critical role of feedback in task control.
    Uyanik I; Sefati S; Stamper SA; Cho KA; Ankarali MM; Fortune ES; Cowan NJ
    Elife; 2020 Jan; 9():. PubMed ID: 31971509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial Sensing and Encoding of Self-Motion: Structural and Functional Similarities across Metazoan Taxa.
    Rauscher MJ; Fox JL
    Integr Comp Biol; 2018 Nov; 58(5):832-843. PubMed ID: 29860381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect walking and robotics.
    Delcomyn F
    Annu Rev Entomol; 2004; 49():51-70. PubMed ID: 14651456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorobotic approaches to the study of motor systems.
    Beer RD; Chiel HJ; Quinn RD; Ritzmann RE
    Curr Opin Neurobiol; 1998 Dec; 8(6):777-82. PubMed ID: 9914233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics and neuroscience.
    Floreano D; Ijspeert AJ; Schaal S
    Curr Biol; 2014 Sep; 24(18):R910-R920. PubMed ID: 25247370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems.
    Carryon GN; Tangorra JL
    Bioinspir Biomim; 2020 Jun; 15(4):046013. PubMed ID: 32059194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
    Szczecinski NS; Quinn RD
    Biol Cybern; 2018 Apr; 112(1-2):99-112. PubMed ID: 28782078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body Caudal Undulation Measured by Soft Sensors and Emulated by Soft Artificial Muscles.
    Schwab F; Lunsford ET; Hong T; Wiesemüller F; Kovac M; Park YL; Akanyeti O; Liao JC; Jusufi A
    Integr Comp Biol; 2021 Nov; 61(5):1955-1965. PubMed ID: 34415009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
    Ritzmann RE; Quinn RD; Fischer MS
    Arthropod Struct Dev; 2004 Jul; 33(3):361-79. PubMed ID: 18089044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.