These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30376290)
1. Versatile Hyperbranched Poly(β-hydrazide ester) Macromers as Injectable Antioxidative Hydrogels. Xu Q; Venet M; Wang W; Creagh-Flynn J; Wang X; Li X; Gao Y; Zhou D; Zeng M; Lara-Sáez I; A S; Tai H; Wang W ACS Appl Mater Interfaces; 2018 Nov; 10(46):39494-39504. PubMed ID: 30376290 [TBL] [Abstract][Full Text] [Related]
3. Hyperbranched poly(amine-ester) based hydrogels for controlled multi-drug release in combination chemotherapy. Zhang H; Zhao C; Cao H; Wang G; Song L; Niu G; Yang H; Ma J; Zhu S Biomaterials; 2010 Jul; 31(20):5445-54. PubMed ID: 20382422 [TBL] [Abstract][Full Text] [Related]
4. Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. Wang W; Chen J; Li M; Jia H; Han X; Zhang J; Zou Y; Tan B; Liang W; Shang Y; Xu Q; A S; Wang W; Mao J; Gao X; Fan G; Liu W ACS Appl Mater Interfaces; 2019 Jan; 11(3):2880-2890. PubMed ID: 30592403 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Hacker MC; Klouda L; Ma BB; Kretlow JD; Mikos AG Biomacromolecules; 2008 Jun; 9(6):1558-70. PubMed ID: 18481893 [TBL] [Abstract][Full Text] [Related]
6. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels. Ossipov DA; Piskounova S; Varghese OP; Hilborn J Biomacromolecules; 2010 Sep; 11(9):2247-54. PubMed ID: 20704177 [TBL] [Abstract][Full Text] [Related]
7. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Wu ZM; Zhang XG; Zheng C; Li CX; Zhang SM; Dong RN; Yu DM Eur J Pharm Sci; 2009 Jun; 37(3-4):198-206. PubMed ID: 19491006 [TBL] [Abstract][Full Text] [Related]
8. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Du JZ; Sun TM; Weng SQ; Chen XS; Wang J Biomacromolecules; 2007 Nov; 8(11):3375-81. PubMed ID: 17902689 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Watson BM; Kasper FK; Engel PS; Mikos AG Biomacromolecules; 2014 May; 15(5):1788-96. PubMed ID: 24758298 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation. Choh SY; Cross D; Wang C Biomacromolecules; 2011 Apr; 12(4):1126-36. PubMed ID: 21384907 [TBL] [Abstract][Full Text] [Related]
12. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation. Xu Q; He C; Zhang Z; Ren K; Chen X ACS Appl Mater Interfaces; 2016 Nov; 8(45):30692-30702. PubMed ID: 27762560 [TBL] [Abstract][Full Text] [Related]
13. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength. Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783 [TBL] [Abstract][Full Text] [Related]
14. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC). Hodgson SM; Bakaic E; Stewart SA; Hoare T; Adronov A Biomacromolecules; 2016 Mar; 17(3):1093-100. PubMed ID: 26842783 [TBL] [Abstract][Full Text] [Related]
15. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel. Gong C; Shan M; Li B; Wu G J Biomed Mater Res A; 2017 Sep; 105(9):2451-2460. PubMed ID: 28481038 [TBL] [Abstract][Full Text] [Related]
16. Reactive Oxygen Species Shielding Hydrogel for the Delivery of Adherent and Nonadherent Therapeutic Cell Types. Dollinger BR; Gupta MK; Martin JR; Duvall CL Tissue Eng Part A; 2017 Oct; 23(19-20):1120-1131. PubMed ID: 28394196 [TBL] [Abstract][Full Text] [Related]
17. A Factor-Free Hydrogel with ROS Scavenging and Responsive Degradation for Enhanced Diabetic Bone Healing. Zhang Q; Chen W; Li G; Ma Z; Zhu M; Gao Q; Xu K; Liu X; Lu W; Zhang W; Wu Y; Shi Z; Su J Small; 2024 Jun; 20(24):e2306389. PubMed ID: 38168513 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. Cao Y; Lee BH; Peled HB; Venkatraman SS J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015 [TBL] [Abstract][Full Text] [Related]
19. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Fan M; Ma Y; Mao J; Zhang Z; Tan H Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant and radical scavenging properties of Malva sylvestris. DellaGreca M; Cutillo F; D'Abrosca B; Fiorentino A; Pacifico S; Zarrelli A Nat Prod Commun; 2009 Jul; 4(7):893-6. PubMed ID: 19731587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]