BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30376319)

  • 1. New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon.
    Cheng B; Wang X; Lin Q; Zhang X; Meng L; Sun RC; Xin F; Ren J
    J Agric Food Chem; 2018 Nov; 66(45):11981-11989. PubMed ID: 30376319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery.
    Hu X; Lievens C; Li CZ
    ChemSusChem; 2012 Aug; 5(8):1427-34. PubMed ID: 22730169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage acidic-alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars.
    Guo B; Zhang Y; Yu G; Lee WH; Jin YS; Morgenroth E
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1069-87. PubMed ID: 23306881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins.
    Chen Y; Jiang Y; Tian D; Hu J; He J; Yang G; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Dec; 164():3038-3047. PubMed ID: 32853606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surfactant on hydrothermal carbonization of coconut shell.
    Tu R; Sun Y; Wu Y; Fan X; Wang J; Shen X; He Z; Jiang E; Xu X
    Bioresour Technol; 2019 Jul; 284():214-221. PubMed ID: 30939383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinfection byproduct formation from lignin precursors.
    Hua G; Kim J; Reckhow DA
    Water Res; 2014 Oct; 63():285-95. PubMed ID: 25016301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.
    Cantarutti C; Dinu R; Mija A
    Biomacromolecules; 2020 Feb; 21(2):517-533. PubMed ID: 31675230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting.
    López-González JA; López MJ; Vargas-García MC; Suárez-Estrella F; Jurado M; Moreno J
    Bioresour Technol; 2013 Oct; 146():574-584. PubMed ID: 23973978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates.
    Ruiz-Rosas R; Valero-Romero MJ; Salinas-Torres D; Rodríguez-Mirasol J; Cordero T; Morallón E; Cazorla-Amorós D
    ChemSusChem; 2014 May; 7(5):1458-67. PubMed ID: 24678067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensation of α-Carbonyl Aldehydes Leads to the Formation of Solid Humins during the Hydrothermal Degradation of Carbohydrates.
    Shi N; Liu Q; Ju R; He X; Zhang Y; Tang S; Ma L
    ACS Omega; 2019 Apr; 4(4):7330-7343. PubMed ID: 31459833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective conversion of biorefinery lignin into dicarboxylic acids.
    Ma R; Guo M; Zhang X
    ChemSusChem; 2014 Feb; 7(2):412-5. PubMed ID: 24464928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.
    Zainol MM; Amin NA; Asmadi M
    Bioresour Technol; 2015 Aug; 190():44-50. PubMed ID: 25919936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.
    Li C; Ding D; Xia Q; Liu X; Wang Y
    ChemSusChem; 2016 Jul; 9(13):1712-8. PubMed ID: 27241180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass.
    Sandhya SV; Kiran K; Kuttiraja M; Preeti VE; Sindhu R; Vani S; Kumar SR; Pandey A; Binod P
    Indian J Exp Biol; 2013 Nov; 51(11):1012-7. PubMed ID: 24416939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaches to the selective catalytic conversion of lignin: a grand challenge for biorefinery development.
    Bozell JJ
    Top Curr Chem; 2014; 353():229-55. PubMed ID: 24696353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal carbonization of pulp mill streams.
    Wikberg H; Ohra-Aho T; Honkanen M; Kanerva H; Harlin A; Vippola M; Laine C
    Bioresour Technol; 2016 Jul; 212():236-244. PubMed ID: 27107340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.